Abstract

With the growing importance of regenerative power generation and especially of a hydrogen-based economy, the full potential of gas turbines of the smaller output class (<10 MW) can be ideally exploited to provide peak coverage of the energy need whilst stabilizing the electric grids in the mid- and low-voltage range. Such machines can be typically started in a relatively short time (similarly to aero engines) and are capable, at the same time, of delivering dispatchable power-on-demand. A safe, stable and profitable operation under highly unsteady conditions poses renewed challenges for an optimal thermal management (especially in the HP stages) as well as control and surveillance of the machines. The understanding and hence predictability of the propagation of the temperature inhomogeneities originating at the combustor outlet remains hence a primary objective of current research, as persistent distortion patterns could be adopted at the turbine exhaust as diagnostic indications of a malfunction of the combustor, for example. In the present study, low-frequency disturbances introduced by a periodic load variation have been simulated and superimposed to the inhomogeneous, unsteady flow entering a three-stage, high-pressure industrial gas turbine fed by a can-type combustion chamber comprising six silo-burners. The effects of the unsteadiness realized at the combustor exit have been investigated by means of Detached Eddy Simulations, whereby a density-based solution approach with detailed thermodynamics has been employed. The periodic disturbances at the turbine inlet have been obtained by means of an artificially generated, unsteady field, resulting from a two-dimensional snapshot of the flow field at the combustor exit. Also, a combustor failure has been mimicked by reducing (respectively increasing) the mean temperature in some of the turbine inlet regions corresponding to the outlet of two burners. The propagation and amplitude changes of temperature fluctuations have been analyzed in the frequency domain. Tracking of the temperature fluctuations' maxima at the lowest frequencies revealed characteristic migration patterns indicating that the corresponding fluctuations persist with a non-negligible amplitude up to the last rows. A distinct footprint could also be observed at the same locations when a combustor failure was simulated, showing that, in principle, the early detection of combustor failures is indeed possible.

References

1.
Wulf
,
C.
,
Linssen
,
J.
, and
Zapp
,
P.
,
2018
, “Power-to-Gas—Concepts, Demonstration, and Prospects,”
Hydrogen Supply Chains
,
Academic Press
,
San Diego, CA
, pp.
309
345
.
2.
Chiesa
,
P.
,
Lozza
,
G.
, and
Mazzocchi
,
L.
,
2005
, “
Using Hydrogen as Gas Turbine Fuel
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
73
80
.
3.
Hong
,
H.
,
Wang
,
W.
, and
Liu
,
Y.
,
2019
, “
High-Temperature Fatigue Behavior of a Steam Turbine Rotor Under Flexible Operating Conditions With Variable Loading Amplitudes
,”
Int. J. Mech. Sci.
,
163
, p.
105121
.
4.
Vogt
,
J.
,
Schaaf
,
T.
, and
Helbig
,
K.
,
2013
, “
Optimizing Lifetime Consumption and Increasing Flexibility Using Enhanced Lifetime Assessment Methods With Automated Stress Calculation From Long-Term Operation Data
,”
Proceedings of ASME Turbo Expo 2013
,
San Antonio, TX
,
June 3–7
, ASME Paper No. GT2013-95068.
5.
Salvadori
,
S.
,
Riccio
,
G.
,
Insinna
,
M.
, and
Martelli
,
F.
,
2012
, “
Analysis of Combustor/Vane Interaction With Decoupled and Loosely Coupled Approaches
,”
Proceedings of ASME Turbo Expo 2012
,
Copenhagen, Denmark
,
June 11–15
, ASME Paper No. GT2012-69038, pp.
2641
2652
.
6.
Butler
,
T. L.
,
Sharma
,
O. P.
,
Joslyn
,
H. D.
, and
Dring
,
R. P.
,
1989
, “
Redistribution of an Inlet Temperature Distortion in an Axial Flow Turbine Stage
,”
J. Propul. Power
,
5
(
1
), pp.
64
71
.
7.
Jenny
,
P.
,
Lenherr
,
C.
,
Abhari
,
R. S.
, and
Kalfas
,
A.
,
2012
, “
Effect of hot Streak Migration on Unsteady Blade row Interaction in an Axial Turbine
,”
ASME J. Turbomach.
,
134
(
5
), p.
051020
.
8.
Ames
,
F. E.
,
1995
, “
The Influence of Large Scale High Intensity Turbulence on Vane Heat Transfer
,”
ASME J. Turbomach.
,
119
(
1
), pp.
23
30
.
9.
Povey
,
T.
,
Chana
,
K. S.
,
Jones
,
T. V.
, and
Hurrion
,
J.
,
2005
, “
The Effect of Hot-Streaks on HP Vane Surface and Endwall Heat Transfer: An Experimental and Numerical Study
,”
ASME J. Turbomach.
,
129
(
1
), pp.
32
43
.
10.
Qureshi
,
I.
,
Beretta
,
A.
, and
Povey
,
T.
,
2010
, “
Effect of Simulated Combustor Temperature Nonuniformity on HP Vane and Endwall Heat Transfer: An Experimental and Computational Investigation
,”
ASME J. Eng. Gas Turbines Power
,
133
(
3
), p.
031901
.
11.
Rai
,
M. M.
, and
Dring
,
R. P.
,
1990
, “
Navier-Stokes Analyses of the Redistribution of Inlet Temperature Distortions in a Turbine
,”
J. Propul. Power
,
6
(
3
), pp.
276
282
.
12.
Dorney
,
D. J.
,
Davis
,
R. L.
,
Edwards
,
D. E.
, and
Madavan
,
N. K.
,
1992
, “
Unsteady Analysis of hot Streak Migration in a Turbine Stage
,”
J. Propul. Power
,
8
(
2
), pp.
520
529
.
13.
Takahashi
,
R.
, and
Ni
,
R.
,
1990
, “
Unsteady Euler Analysis of the Redistribution of an Inlet Temperature Distortion in a Turbine
,”
Proceedings of the 26th Joint Propulsion Conference
,
Orlando, FL
,
July 16–18
, p.
2262,
AIAA Paper No. 90-2262.
14.
Ong
,
J.
, and
Miller
,
R. J.
,
2008
, “
Hot Streak and Vane Coolant Migration in a Downstream Rotor
,”
Proceedings of ASME Turbo Expo 2008
,
Berlin, Germany
,
June 9–13
, pp.
1749
1760,
ASME Paper No. GT2008-50971.
15.
Cha
,
C. M.
,
Hong
,
S.
,
Ireland
,
P. T.
,
Denman
,
P.
, and
Savarianandam
,
V.
,
2012
, “
Experimental and Numerical Investigation of Combustor-Turbine Interaction Using an Isothermal, Nonreacting Tracer
,”
ASME J. Eng. Gas Turbines Power
,
134
(
8
), p.
081501
.
16.
Luque
,
S.
,
Kanjirakkad
,
V.
,
Aslanidou
,
I.
,
Lubbock
,
R.
,
Rosic
,
B.
, and
Uchida
,
S.
,
2015
, “
A new Experimental Facility to Investigate Combustor–Turbine Interactions in gas Turbines With Multiple can Combustors
,”
ASME J. Eng. Gas Turbines Power
,
137
(
5
), p.
051503
.
17.
Jacobi
,
S.
, and
Rosic
,
B.
,
2017
, “
Thermal Investigation of Integrated Combustor Vane Concept Under Engine-Realistic Conditions
,”
ASME J Turbomach.
,
139
(
2
), p.
021005
.
18.
Hilgert
,
J.
,
Bruschewski
,
M.
,
Werschnik
,
H.
, and
Schiffer
,
H. P.
,
2017
, “
Numerical Studies on Combustor-Turbine Interaction at the Large Scale Turbine Rig (Lstr)
,”
Proceedings of ASME Turbo Expo 2017
,
Charlotte, NC
,
June 26–30
, ASME Paper No. GT2017-64504.
19.
Krumme
,
A.
,
Buske
,
C.
,
Bachner
,
J. R.
,
Dähnert
,
J.
,
Tegeler
,
M.
,
Ferraro
,
F.
,
Gövert
,
S.
,
Kocian
,
F.
,
di Mare
,
F.
, and
Pahs
,
A.
,
2019
, “
Investigation of Combustor-Turbine-Interaction in a Rotating Cooled Transonic High-Pressure Turbine Test Rig: Part 1—Experimental Results
,”
Proceedings of ASME Turbo Expo 2019
,
Phoenix, AZ
,
June 17–21
, ASME Paper No. GT2019-90733.
20.
Gövert
,
S.
,
Ferraro
,
F.
,
Krumme
,
A.
,
Buske
,
C.
,
Tegeler
,
M.
,
Kocian
,
F.
, and
di Mare
,
F.
,
2019
, “
Investigation of Combustor-Turbine-Interaction in a Rotating Cooled Transonic High-Pressure Turbine Test Rig: Part 2—Numerical Modelling and Simulation
,”
Proceedings of ASME Turbo Expo 2019
,
Phoenix, AZ
,
June 17–21
, ASME Paper No. GT2019-90736.
21.
Medic
,
G.
,
Kalitzin
,
G.
,
You
,
D.
,
van der Weide
,
E.
,
Alonso
,
J.
, and
Pitsch
,
H.
,
2007
, “
Integrated RANS/LES Computations of an Entire gas Turbine jet Engine
,”
Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit.
,
Reno, NV
,
Jan. 8–11
, p.
1117,
AIAA Paper No. 2007-1117.
22.
Klapdor
,
E. V.
,
di Mare
,
F.
,
Kollmann
,
W.
, and
Janicka
,
J.
,
2013
, “
A Compressible Pressure-Based Solution Algorithm for gas Turbine Combustion Chambers Using the PDF/FGM Model
,”
Flow, Turbulence Combust.
,
91
(
2
), pp.
209
247
.
23.
Papadogiannis
,
D.
,
2015
, “
Coupled Large Eddy Simulations of Combustion Chamber-Turbine Interactions
,”
Ph.D. dissertation
,
INPT
,
Toulouse
, https://oatao.univ-toulouse.fr/14169/
24.
Legrenzi
,
P.
,
2017
, “
A Coupled CFD Approach for Combustor-Turbine Interaction
,”
Ph.D. dissertation
,
Loughborough University
,
Loughborough
, https://hdl.handle.net/2134/26436
25.
Denton
,
J. D.
,
2010
, “
Some Limitations of Turbomachinery CFD
,”
Proceedings of ASME Turbo Expo 2010
,
Glasgow, UK
,
June 14–18
, pp.
735
745
. ASME Paper No. GT2010-22540.
26.
Duchaine
,
F.
,
Dombard
,
J.
,
Gicquel
,
L. Y. M.
, and
Koupper
,
C.
,
2017
, “
On the Importance of Inlet Boundary Conditions for Aerothermal Predictions of Turbine Stages With Large Eddy Simulation
,”
Comput. Fluids
(Special Issue ICCFD8),
154
, pp.
60
73
.
27.
Adamczuk
,
R.
, and
Seume
,
J. R.
,
2012
, “
Time Resolved Full-Annulus Computations of a Turbine With Inhomogeneous Inlet Conditions
,”
Int. J. Gas Turbine, Propul. Power Syst.
,
4
(
2
), pp.
1
7
.
28.
Chi
,
Z.
,
Liu
,
H.
,
Zang
,
S.
,
Pan
,
C.
, and
Zhang
,
M.
,
2018
, “
Full-Annulus URANS Study of Inlet Hot-Streak Transportation in a Four-Stage Gas Turbine
,”
Proceedings of ASME Turbo Expo 2018
,
Oslo, Norway
,
June 11–15
, ASME Paper No. GT2018-75596.
29.
Chi
,
Z.
,
Liu
,
H.
,
Zang
,
S.
,
Pan
,
C.
, and
Jiao
,
G.
,
2019
, “
Full-Annulus URANS Study on the Transportation of Combustion Inhomogeneity in a Four-Stage Cooled Turbine
,”
ASME J. Turbomach.
,
141
(
11
), p.
111003
.
30.
Blazek
,
J.
,
2001
,
Computational Fluid Dynamics: Principles and Applications
, 1st Ed.,
Elsevier Science
,
Oxford, UK
.
31.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
Proceedings of the 30th Aerospace Sciences Meeting and Exhibit.
,
Reno, NV
,
Jan. 6–9
.
32.
Spalart
,
P. R.
,
1997
, “
Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach
,”
Proceedings of First AFOSR International Conference on DNS/LES
,
Greyden Press
, https://www.tib.eu/en/search/id/BLCP:CN032430355/Comments-on-the-Feasibility-of-LES-for-Wings-and?cHash=f96f49e92e03e2d92c8740c7985dc18d
33.
Post
,
P.
,
Sembritzky
,
M.
, and
di Mare
,
F.
,
2019
, “
Towards Scale Resolving Computations of Condensing Wet Steam Flows
,”
Proceedings of ASME Turbo Expo 2019
,
Phoenix, AZ
,
June 17–21
, ASME Paper No. GT2019-91269.
34.
Post
,
P.
,
Winhart
,
B.
, and
di Mare
,
F.
,
2020
, “
Large Eddy Simulation of a Condensing Wet Steam Turbine Cascade
,”
Proceedings of ASME Turbo Expo 2020, Virtual Conference
,
Online
,
September 21–25
, ASME Paper No. GT2020-16064.
35.
Ziaja
,
K.
,
Post
,
P.
,
Sembritzky
,
M.
,
Schramm
,
A.
,
Willers
,
O.
,
Kunte
,
H.
,
Seume
,
J.
, and
di Mare
,
F.
,
2020
, “
Numerical Investigation of a Partially Loaded Supersonic ORC Turbine Stage
,”
Proceedings of ASME Turbo Expo 2020, Virtual Conference
,
Online
,
Sept. 21–25
, ASME Paper No. GT2020-15219.
36.
Karaefe
,
E. K.
,
Post
,
P.
,
Sembritzky
,
M.
,
Schramm
,
A.
,
Kunick
,
M.
,
Gampe
,
U.
, and
di Mare
,
F.
, “
Numerical Investigation of a Centrifugal Compressor for Supercritical CO2 Cycles
,”
Proceedings of ASME Turbo Expo 2020, Virtual Conference
,
Online
,
Sept. 21–25
, ASME Paper No. GT2020-15194.
37.
Travin
,
A.
,
Shur
,
M.
,
Strelets
,
M. M.
, and
Spalart
,
P. R.
,
2002
, “Physical and Numerical Upgrades in the Detached-Eddy Simulation of Complex Turbulent Flows,”
Advances in LES of Complex Flows
,
Springer
,
Dordrecht
, pp.
239
254
.
38.
Burcat
,
A.
, and
Ruscic
,
B.
,
2001
, “Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion,” Technion-Israel Institute of Technology Report No. TAE 960, Argonne National Lab. Report No. ANL-05/20.
39.
Poling
,
B. E.
,
Prausnitz
,
J. M.
, and
O'connell
,
J. P.
,
2001
,
The Properties of Gases and Liquids
, Vol.
5
,
Mcgraw-Hill
,
New York
.
You do not currently have access to this content.