Abstract

The performance of the solar photovoltaic (PV) module is more sensitive to its operating temperature. A PV module with a cooling system produces higher electrical power output than a PV module without a cooling system. In addition, the PV module with the integrated cooling system is capable of generating electrical and thermal energy simultaneously. Such an integrated (hybrid) system is termed as a solar photovoltaic thermal (PV/T) system. When two or more collectors connected in series as a mean to have higher output, then such a system is termed as series-connected PV/T water collectors. This study presents two fuzzy inference systems (FISs), namely, Mamdani and Sugeno, for predicting the performance of series-connected PV/T water collectors. The set of rules was framed individually for both models in a way to predict the power output of PV/T water collectors in an inaccurate manner. The predicted results by inference systems are compared with experimental values to check their prediction accuracies. The accuracy of such a proposed Mamdani and Sugeno FIS is 95.67% and 99.92%.

References

1.
Shyam
,
Tiwari
,
G. N.
,
Fischer
,
O.
,
Mishra
,
R. K.
, and
Al-Helal
,
I. M.
,
2016
, “
Performance Evaluation of N-Photovoltaic Thermal (PVT) Water Collectors Partially Covered by Photovoltaic Module Connected in Series: An Experimental Study
,”
Sol. Energy
,
134
, pp.
302
313
.10.1016/j.solener.2016.05.013
2.
Kumar
,
S.
,
Singh
,
G.
,
Tiwari
,
G. N.
, and
Yadav
,
J. K.
,
2013
, “
Thermal Modelling of a Hybrid Photovoltaic Thermal Water Heater in Parallel Configuration
,”
Int. J. Sustainable Energy
,
32
(
5
), pp.
277
295
.10.1080/14786451.2011.644627
3.
Nizetic
,
S.
,
Coko
,
D.
,
Yadav
,
A.
, and
Grubisic-Cabo
,
F.
,
2016
, “
Water Spray Cooling Technique Applied on a Photovoltaic Panel: The Performance Response
,”
Energy Convers. Manage.
,
108
, pp.
287
296
.10.1016/j.enconman.2015.10.079
4.
Mojumder
,
J. C.
,
Ong
,
H. C.
,
Chong
,
W. T.
,
Izadyar
,
N.
, and
Shamshirband
,
S.
,
2017
, “
The Intelligent Forecasting of the Performances in PV/T Collectors Based on Soft Computing Method
,”
Renewable Sustainable Energy Rev.
,
72
, pp.
1366
1378
.10.1016/j.rser.2016.11.225
5.
Al-Majidi
,
S. D.
,
Abbod
,
M. F.
, and
Al-Raweshidy
,
H. S.
,
2018
, “
A Novel Maximum Power Point Tracking Technique Based on Fuzzy Logic for Photovoltaic Systems
,”
Int. J. Hydrogen Energy
,
43
(
31
), pp.
14158
14171
.10.1016/j.ijhydene.2018.06.002
6.
Chen
,
S. X.
,
Gooi
,
H. B.
, and
Wang
,
M. Q.
,
2013
, “
Solar Radiation Forecast Based on Fuzzy Logic and Neural Networks
,”
Renewable Energy
,
60
, pp.
195
201
.10.1016/j.renene.2013.05.011
7.
Rizwan
,
M.
,
Jamil
,
M.
,
Kirmani
,
S.
, and
Kothari
,
D. P.
,
2014
, “
Fuzzy Logic Based Modeling and Estimation of Global Solar Energy Using Meteorological Parameters
,”
Energy
,
70
, pp.
685
691
.10.1016/j.energy.2014.04.057
8.
Vafaei
,
L. E.
, and
Sah
,
M.
,
2017
, “
Predicting Efficiency of Flat-Plate Solar Collector Using a Fuzzy Inference System
,”
Procedia Comput. Sci.
,
120
, pp.
221
228
.10.1016/j.procs.2017.11.232
9.
F.
,
Chekired
,
A.
,
Mahrane
,
Z.
,
Samara
,
M.
,
Chikh
,
Chekired
,
A.
,
Mahrane
,
Z.
, and
Samara
,
2017
, “
Fuzzy Logic Energy Management for a Photovoltaic Solar Home
,”
Energy Procedia
,
134
, pp.
723
730
.10.1016/j.egypro.2017.09.566
10.
Sridharan
,
M.
,
Jayaprakash
,
G.
,
Chandrasekar
,
M.
,
Vigneshwar
,
P.
,
Paramaguru
,
S.
, and
Amarnath
,
K.
,
2018
, “
Prediction of Solar Photovoltaic/Thermal Collector Power Output Using Fuzzy Logic
,”
ASME J. Sol. Energy Eng.
,
140
(
6
), p.
061013
.10.1115/1.4040757
11.
Dhimish
,
M.
,
Holmes
,
V.
,
Mehrdadi
,
B.
, and
Dales
,
M.
,
2018
, “
Comparing Mamdani Sugeno Fuzzy Logic and RBF ANN Network for PV Fault Detection
,”
Renewable Energy
,
117
, pp.
257
274
.10.1016/j.renene.2017.10.066
12.
Ruiz-Mercado
,
C.
,
Pacheco-Vega
,
A.
, and
Palacios
,
E.
,
2008
, “
A Takagi-Sugeno Fuzzy Model of a Concentric-Tubes Heat Exchanger
,”
ASME
Paper No. IMECE2008-69013.10.1115/IMECE2008-69013
13.
Muthuswamy Palaniswamy
,
A.
, and
Srinivasan
,
K.
,
2016
, “
Takagi-Sugeno Fuzzy Approach for Power Optimization in Standalone Photovoltaic Systems
,”
Sol. Energy
,
139
, pp.
213
220
.10.1016/j.solener.2016.09.027
14.
Antonio
,
B.
,
Skrjanc
,
I.
, and
Sáeza
,
D.
,
2018
, “
Design of Fuzzy Robust Control Strategies for a Distributed Solar Collector Field
,”
Appl. Soft Comput.
,
71
, pp.
1009
1019
.10.1016/j.asoc.2017.10.003
15.
Sivanesan
,
B.
,
Yu
,
E. Y.
, and
Goh
,
K. P.
,
2017
, “
Solar Forecasting Using ANN With Fuzzy Logic Pre-Processing
,”
Energy Procedia
,
143
, pp.
727
732
.10.1016/j.egypro.2017.12.753
16.
Sowmy
,
D. S.
,
Jose Schiavon Ara
,
P.
, and
Prado
,
R. T. A.
,
2017
, “
Uncertainties Associated With Solar Collector Efficiency Test Using an Artificial Solar Simulator
,”
Renewable Energy
,
108
(
5
), pp.
644
651
.10.1016/j.renene.2016.08.054
17.
Sridharan
,
M.
,
2020
, “
Predicting Performance of Double-Pipe Parallel- and Counter-Flow Heat Exchanger Using Fuzzy Logic
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
3
), p.
031006
.10.1115/1.4044696
18.
Sridharan
,
M.
,
2020
, “
Application of Generalized Regression Neural Network in Predicting the Performance of Natural Convection Solar Dryer
,”
ASME J. Sol. Energy Eng.
,
142
(
3
), p.
031002
.10.1115/1.4045384
You do not currently have access to this content.