A method, called the Complex NonLinear Modal Analysis (CNLMA), is proposed for the calculation of the periodic solutions of nonlinear mechanical systems with continued nonlinearities. The equivalent linearization concept and the notion of nonlinear complex modes are applied in order to analyze the steady-state responses of autonomous nonlinear systems. The CNLM-Analysis appears very interesting in regard to computational time; it also necessitates very few computer resources. This method was applied to study instability phenomena in a nonlinear model with a constant brake friction coefficient.

1.
Pierre
,
C.
,
Ferri
,
A. A.
, and
Dowell
,
E. H.
,
1985
, “
Multi-Harmonic Analysis of Dry Friction Damped Systems Using an Incremental Harmonic Balance Method
,”
ASME J. Appl. Mech.
,
52
, pp.
958
964
.
2.
Cameron
,
T. M.
, and
Griffin
,
J. H.
,
1989
, “
An Alternating Frequency/Time Domain Method for Calculating the Steady State Response of Nonlinear Dynamic
,”
ASME J. Appl. Mech.
,
56
, pp.
149
154
.
3.
Nayfeh, A. H., and Mook, D. T., 1979, Nonlinear Oscillations, John Wiley & Sons, New-York.
4.
Nayfeh, A. H., and Balachandran, B., 1995, Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods, John Wiley & Sons.
5.
Guckenheimer, J., and Holmes, P., 1986, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag.
6.
Jezequel
,
L.
, and
Lamarque
,
C. H.
,
1991
, “
Analysis of Non-linear Dynamical Systems by the Normal Form Theory
,”
J. Sound Vib.
,
149
, pp.
429
459
.
7.
Yu
,
P.
,
1998
, “
Computation of Normal Forms via a Perturbation Technique
,”
J. Sound Vib.
,
211
, pp.
19
38
.
8.
Sinou
,
J. J.
,
Thouverez
,
F.
, and
Je´ze´quel
,
L.
,
2003
, “
Center Manifold and Multivariable Approximants Applied to Non-Linear Stability Analysis
,”
Int. J. Non-Linear Mech.
,
38/9
, pp.
1421
1442
.
9.
Baker, G. A., and Graves-Morris, P., 1996, Pade´ Approximants, Cambridge University Press, Cambridge.
10.
Brezinski
,
C.
,
1983
, “
Extrapolation Algorithms and Pade´ Approximations: A Historical Survey
,”
Applied Numerical Mathematics
,
20
, pp.
299
318
.
11.
Boudot
,
J. P.
,
Carneiro
,
A.
, and
Je´ze´quel
,
L.
,
1998
, “
Analyze des phe´nome`nes intervenant dans la stabilite´ des syste`mes de freinage. Influence des non-line´arite´s
,”
JEF95, Journe´es Europe´ennes de Freinage
, Edition AGIR, Lille,
1
, pp.
213
224
.
12.
Boudot, J. P., 1995, “Mode´lisation des bruits de freinage des ve´hicules Industriels,” The`se de Doctorat, No. 1995-08, Ecole Centrale de Lyon, Ecully.
13.
Sinou, J-J., 2002, “Synthe`se non-line´aire des syste`mes vibrants. Application aux syste`mes de freinage,” The`se de Doctorat, No. 2002-23, Ecole Centrale de Lyon, Ecully.
14.
Rosenberg
,
R. M.
,
1962
, “
The Normal Modes of Nonlinear n-Degree-of-Freedom Systems
,”
ASME J. Appl. Mech.
,
82
, pp.
7
14
.
15.
Rosenberg
,
R. M.
,
1966
, “
On Non-Linear Vibrations of Systems with Many Degree of Freedom
,”
Adv. Appl. Mech.
,
9
, pp.
155
242
.
16.
Szemplinska-Stupinicka
,
W.
,
1979
, “
The Modified Single Mode Method in the Investigation of the Resonant Vibration of Non-Linear Systems
,”
J. Sound Vib.
,
104
(
2
), pp.
475
489
.
17.
Szemplinska-Stupinicka, W., 1990, The Behavior of Nonlinear Vibrating Systems, Kluwer Academic.
18.
Shaw
,
S. W.
, and
Pierre
,
C.
,
1993
, “
Normal Modes for Non-Linear Vibratory Systems
,”
J. Sound Vib.
,
164
(
1
), pp.
85
124
.
19.
Iwan
,
W. D.
,
1973
, “
A Generalization of the Concept of Equivalent Linearization
,”
Int. J. Non-Linear Mech.
,
8
, pp.
279
287
.
20.
Ibrahim
,
R. A.
,
1994
, “
Friction-Induced Vibration, Chatter, Squeal and Chaos: Part II-Dynamics and Modeling
,”
ASME J. Appl. Mech.
,
47
(
7
), pp.
227
253
.
21.
Oden
,
J. T.
, and
Martins
,
J. A. C.
,
1985
, “
Models and Computational Methods for Dynamic friction Phenomena
,”
Comput. Methods Appl. Mech. Eng.
,
52
, pp.
527
634
.
22.
Crolla, D. A., and Lang, A. M., “Brake Noise and Vibration-State of Art,” Tribologie Series 18, Vehicle Tribology, Paper VII, pp. 165–174, Dowson, Taylor & Godet, eds., Elsevier.
23.
Spurr
,
R. T.
,
1961
–1962, “
A Theory of Brake Squeal
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
,
1
, pp.
33
40
.
24.
Sridhar
,
B.
, and
Jordan
,
D.
,
1973
, “
An Algorithm for Calculation of the Jordan Canonical Form of a Matrix
,”
Comput. & Elect. Engng
,
1
, pp.
239
254
.
25.
Bogoliubov, N., and Mitropolski, A., 1961, Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach, New York.
26.
Spanos
,
P-T. D.
, and
Iwan
,
W. D.
,
1978
, “
On the Existence and Uniqueness of Solutions Generated by Equivalent Linearization
,”
Int. J. Non-Linear Mech.
,
13
, pp.
71
78
.
27.
Iwan
,
W. D.
, and
Patula
,
F. J.
,
1972
, “
The Merit of Different Minimization Criteria in Approximate Analysis
,”
ASME J. Appl. Mech.
,
39
, pp.
257
262
.
28.
Spanos
,
P-T. D.
, and
Iwan
,
W. D.
,
1979
, “
Harmonic Analysis of Dynamic Systems with Nonsymmetric Nonlinearities
,”
ASME J. Dyn. Syst., Meas., Control
,
101
, pp.
31
36
.
You do not currently have access to this content.