A new spectral plate element (SPE) is developed to analyze wave propagation in anisotropic laminated composite media. The element is based on the first-order laminated plate theory, which takes shear deformation into consideration. The element is formulated using the recently developed methodology of spectral finite element formulation based on the solution of a polynomial eigenvalue problem. By virtue of its frequency-wave number domain formulation, single element is sufficient to model large structures, where conventional finite element method will incur heavy cost of computation. The variation of the wave numbers with frequency is shown, which illustrates the inhomogeneous nature of the wave. The element is used to demonstrate the nature of the wave propagating in laminated composite due to mechanical impact and the effect of shear deformation on the mechanical response is demonstrated. The element is also upgraded to an active spectral plate clement for modeling open and closed loop vibration control of plate structures. Further, delamination is introduced in the SPE and scattered wave is captured for both broadband and modulated pulse loading.

1.
Kuhlemeyer
,
R.
, and
Lysmer
,
J.
, 1973, “
Finite Element Accuracy for Wave Propagation Problems
,”
J. Soil Mech. Found. Div.
0044-7994,
99
(
SM5
), pp.
421
427
.
2.
Doyle
,
J.
, 1997,
Wave Propagation in Structures
,
Springer
, New York.
3.
Gopalakrishnan
,
S.
,
Martin
,
M.
, and
Doyle
,
J.
, 1992, “
A Matrix Methodology for Spectral Analysis of Wave Propagation in Multiple Connected Timoshenko Beam
,”
J. Sound Vib.
0022-460X,
158
, pp.
11
24
.
4.
Mahapatra
,
D. R.
, 2003, “
Development of Spectral Finite Element Models for Wave Propagation Studies, Health Monitoring and Active Control of Waves in Laminated Composite Structures
,” Ph.D. thesis, Indian Institute of Science, Bangalore, pp.
73
95
.
5.
Danial
,
A.
, 1994, “
Inverse Solutions in Folded Plate Structures
,” Ph.D. thesis, Purdue University.
6.
Chakraborty
,
A.
, and
Gopalakrishnan
,
S.
, 2004a, “
A spectrally formulated finite element for wave propagation analysis in layered composite media
,”
Int. J. Solids Struct.
0020-7683,
41
(
18–19
), pp.
5155
5183
.
7.
Chakraborty
,
A.
, and
Gopalakrishnan
,
S.
, 2004b, “
Wave Propagation in Inhomogeneous Layered Media: Solution of Forward and Inverse Problems
,”
Acta Mech.
0001-5970,
169
(
1–4
), pp.
153
185
.
8.
Chakraborty
,
A.
, and
Gopalakrishnan
,
S.
, 2005, “
A Spectrally Formulated Plate Element for Wave Propagation Analysis in Anisotropic Material
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
194
(
42–44
), pp.
4425
4446
.
9.
Bao
,
G.
, and
Cai
,
H.
, 1997, “
Delamination Cracking in Functionally Graded Coating/Metal Substrate Systems
,”
Acta Mater.
1359-6454,
45
(
3
), pp.
1055
1066
.
10.
Pindera
,
M.
,
Aboudi
,
J.
, and
Arnold
,
S.
, 2002, “
Analysis of Spallation Mechanism in Thermal Barrier Coatings with Graded Bond Coats Using the Higher-Order Theory of FGMS
,”
Eng. Fract. Mech.
0013-7944,
69
, pp.
1587
1606
.
11.
Garg
,
A.
, 1988, “
Delamination-a damage model in composite structures
,”
Eng. Fract. Mech.
0013-7944,
29
, pp.
557
584
.
12.
Ochoa
,
O.
, and
Reddy
,
J.
, 1992,
Finite Element Analysis of Composite Laminates
,
Kluwer
, Dordrecht.
13.
Simitses
,
G.
,
Sallam
,
S.
, and
Yin
,
W.
, 1985, “
Effect of Delamination of Axially Loaded Homogeneous Laminated Plate
,”
AIAA J.
0001-1452,
23
(
9
), pp.
1437
1444
.
14.
Karadomateas
,
G.
, and
Schmueser
,
D.
, 1988, “
Buckling and Postbuckling of Delaminated Composites Under Compressive Loads Including Transverse Shear Effects
,”
AIAA J.
0001-1452,
26
(
3
), pp.
337
342
.
15.
Barbero
,
E.
, and
Reddy
,
J.
, 1991. “Modeling of Delamination in Composite Laminates Using a Layer-Wise Plate Theory,”
Int. J. Solids Struct.
0020-7683,
28
(
3
), pp.
373
388
.
16.
Point
,
N.
, and
Sacco
,
E.
, 1996, “
A delamination model for laminated composites
,”
Int. J. Solids Struct.
0020-7683,
33
(
4
), pp.
483
509
.
17.
Finn
,
S.
, and
Springer
,
G.
, 1993, “
Delaminations in composite plates under transverse static or impact loads - A model
,”
Comput. Struct.
0045-7949,
23
, pp.
177
190
.
18.
Chattopadhya
,
A.
, and
Gu
,
H.
, 1994, “
New Higher-Order Plate Theory in Modeling Delamination Buckling of Composite Laminates
,”
AIAA J.
0001-1452,
32
(
8
), pp.
1709
1716
.
19.
Williams
,
T.
, and
Addessio
,
F.
, 1997, “
A General Theory for Laminated Plates with Delaminations
,”
Int. J. Solids Struct.
0020-7683,
34
(
16
), pp.
2003
2024
.
20.
Williams
,
T.
, 1999, “
A Generalized Multilength Scale Nonlinear Composite Plate Theory with Delamination
,”
Int. J. Solids Struct.
0020-7683,
36
, pp.
3015
3050
.
21.
Greco
,
F.
,
Lonetti
,
P.
, and
Zinno
,
R.
, 2002, “
An Analytical Delamination Model for Laminated Plates Including Bridging Effects
,”
Int. J. Solids Struct.
0020-7683,
39
(
9
), pp.
2435
2463
.
22.
Rice
,
J.
, and
Levy
,
N.
, 1972, “
The Part-Through Surface Crack in an Elastic Plate
,”
ASME J. Appl. Mech.
0021-8936,
39
, pp.
183
194
.
23.
Krawczuk
,
M.
,
Palacz
,
M.
, and
Ostachowicz
,
W.
, 2004, “
Wave Propagation in Plate Structures for Crack Detection
,”
Finite Elem. Anal. Design
0168-874X,
40
, pp.
991
1004
.
24.
Chakraborty
,
A.
, 2004, “
Wave Propagation in Anisotropic and Inhomogeneous Structures
,” Ph.D. thesis, Indian Institute of Science, Bangalore.
25.
Mahapatra
,
D. R.
,
Gopalakrishnan
,
S.
, and
Balachandran
,
B.
, 2001, “
Active Feedback Control of Multiple Waves in Helicopter Gearbox Support Struts
,”
Smart Mater. Struct.
0964-1726,
10
, pp.
1046
1058
.
26.
Mahapatra
,
D. R.
, and
Gopalakrishnan
,
S.
, 2003a, “
Optimal Spectral Control of Broadband Waves in Composite Beams with Distributed Sensor-Actuator Configuration
,”
SPIE Symposium on Smart Materials and MEMS
, Melbourne, Australia, Dec. 13–15.
27.
Lancaster
,
P.
, 1966,
Lambda Matrices and Vibrating Systems
,
Pergamon Press
, N. Y.
28.
Lancaster
,
P.
, 1969,
Theory of Matrices
,
Academic Press
, N.Y.
29.
Golub
,
G.
, and
Loan
,
C. V.
, 1989,
Matrix Computations
,
The Johns Hopkins University Press
, Baltimore.
30.
Reddy
,
J. N.
, 1997,
Mechanics of Laminated Composite Plates
,
CRC Press
, Boca Raton, FL.
31.
Tisseur
,
F.
, and
Higham
,
N. J.
, 2001, “
Structured Pseudospectra for Polynomial Eigenvalue Problems, with Applications
,”
SIAM J. Matrix Anal. Appl.
0895-4798,
23
(
1
), pp.
187
208
.
32.
Reddy
,
J.
, 1999, “
On Laminated Composite Plates with Integrated Sensors and Actuators
,”
Eng. Struct.
0141-0296,
21
, pp.
568
593
.
33.
Khadem
,
S.
, and
Rezaee
,
M.
, 2000, “
Introduction of Modified Comparison Functions for Vibration Analysis of a Rectangular Cracked Plate
,”
J. Sound Vib.
0022-460X,
236
(
2
), pp.
245
258
.
34.
Anderson
,
B.
, and
Moore
,
J.
, 1990,
Optimal Control
,
Prentice–Hall
, Englewood Cliff, N. J.
35.
LS-DYNA
, 2003, Livermore Software Technology Corporation, California.
36.
Kumar
,
D.
,
RoyMahapatra
,
D.
, and
Gopalakrishnan
,
S.
, 2004, “
A Spectral Finite Element for Wave Propagation and Structural Diagnostic Analysis of Composite Beam with Transverse Crack
,”
Finite Elem. Anal. Design
0168-874X,
40
(
13–14
), pp.
1729
1751
.
37.
Mahapatra
,
D. R.
, and
Gopalakrishnan
,
S.
, 2003b, “
A Spectral Finite Element Model for Analysis of Axial-Flexural-Shear Coupled Wave Propagation in Laminated Composite Beams
,”
Compos. Struct.
0263-8223,
59
(
1
), pp.
67
88
.
38.
Point
,
N.
, and
Sacco
,
E.
, 1996, “
A Delamination Model for Laminated Composites
,”
Int. J. Solids Struct.
0020-7683,
33
(
4
), pp.
483
509
.
39.
Shivakumar
,
K.
, and
Whitcomb
,
J.
, 1985, “
Buckling of a Sublaminate in Quasi-Isotropic Composite Laminate
,”
J. Compos. Mater.
0021-9983,
19
(
1
),
2
18
.
You do not currently have access to this content.