An efficient numerical method, using integral equations, is developed to calculate precisely the acoustic eigenfrequencies and their associated eigenvectors, located in a given high frequency interval. It is currently known that the real symmetric matrices are well adapted to numerical treatment. However, we show that this is not the case when using integral representations to determine with high accuracy the spectrum of elliptic, and other related operators. Functions are evaluated only in the boundary of the domain, so very fine discretizations may be chosen to obtain high eigenfrequencies. We discuss the stability and convergence of the proposed method. Finally we show some examples.

1.
Babuška
,
I.
, and
Osborn
,
J. E.
, 2000, “
Eigenvalue Problems
,”
Handbook of Numerical Analysis: Finite Element Methods (Part 1)
, Vol.
2
,
P. G.
Ciarlet
and
J. L.
Lions
, eds.,
North-Holland
,
Amsterdam
.
2.
Zienkiewicz
,
O. C.
, 1997, ”
Origins, Milestones and Directions of the Finite Element Method—A Personal View
,”
Handbook of Numerical Analysis: Techniques of Scientific Computing (Part 2)
, Vol.
5
,
P. G.
Ciarlet
and
J. L.
Lions
, eds.,
North-Holland
,
Amsterdam
.
3.
Zienkiewicz
,
O. C.
, 2000,
The Finite Element Method
, 5th ed.,
McGraw-Hill
,
Oxford
.
4.
Strang
,
G.
, and
Fix
,
G. J.
, 1973,
An Analysis of the Finite Element Method
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
5.
Oden
,
J. T.
, and
Reddy
,
J. N.
, 1976,
An Introduction to the Mathematical Theory of Finite Elements
,
Wiley Interscience
,
New York
.
6.
Wait
,
R.
, and
Mitchell
,
A. R.
, 1985,
Finite Element Analysis and Applications
,
Wiley
,
Chichester
.
7.
Mercier
,
B.
,
Osborn
,
J. E.
,
Rappaz
,
J.
, and
Raviart
,
P. A.
, 1981, “
Eigenvalue Approximation by Mixed and Hybrid Methods
,”
Math. Comput.
0025-5718,
36
, pp.
427
453
.
8.
Raviart
,
P. A.
, and
Thomas
,
J. M.
, 1983,
Introduction à l’Analyse Numérique des Équations aux Dérivées Partielles
,
Masson
,
Paris
.
9.
Kolata
,
W. G.
, 1978, “
Approximation of Variationally Posed Eigenvalue Problems
,”
Numer. Math.
0029-599X,
29
, pp.
159
171
.
10.
Brezzi
,
F.
, and
Fortin
,
M.
, 1991,
Mixed and Hybrid Finite Elements Methods
,
Springer-Verlag
,
Berlin
.
11.
Rannacher
,
R.
, 1979, “
Nonconforming Finite Element Methods for Eigenvalue Problems in Linear Plate Theory
,”
Numer. Math.
0029-599X,
33
, pp.
23
42
.
12.
Grégoire
,
J. P.
,
Nedelec
,
J. -C.
, and
Planchard
,
J.
, 1975, “
A Method for Computing Eigenfrequencies of an Acoustic Resonator
,”
Applications of Methods of Functional Analysis to Problems of Mechanics
(
Lecture Notes in Mathematics
), Vol.
503
, pp.
343
353
.
13.
Grégoire
,
J. P.
,
Nedelec
,
J. -C.
, and
Planchard
,
J.
, 1976, “
A Method of Finding the Eigenvalues and Eigenfunctions of Self-Adjoint Operators
,”
Comput. Methods Appl. Mech. Eng.
,
8
, pp.
201
214
. 0045-7825
14.
Bernardi
,
C.
, and
Maday
,
Y.
, 2000, “
Spectral Methods
,”
Handbook of Numerical Analysis: Techniques of Scientific Computing (Part 2)
, Vol.
5
,
P. G.
Ciarlet
and
J. L.
Lions
, eds.,
North-Holland
,
Amsterdam
.
15.
Gottlieb
,
D.
, and
Orszag
,
S. A.
, 1977,
Numerical Analysis of Spectral Methods, Theory and Applications
,
SIAM
,
Philadelphia, PA
.
16.
Vandeven
,
H.
, 1990, “
On the Eigenvalues of Second-Order Spectral Differentiation Operators
,”
Comput. Methods Appl. Mech. Eng.
,
80
, pp.
313
318
. 0045-7825
17.
Forsythe
,
G. E.
and
Wasow
,
W. R.
, 1960,
Finite Difference Methods for Partial Differential Equations
,
Wiley
,
New York
.
18.
Banerjee
,
P. K.
,
Ahmad
,
S.
, and
Wang
,
H. C.
, 1988, “
A New BEM Formulation for the Acoustic Eigenfrequencies Analysis
,”
Int. J. Numer. Methods Eng.
0029-5981,
26
, pp.
1299
1309
.
19.
Coyette
,
J. P.
, and
Fyfe
,
K. R.
, 1990, “
An Improved Formulation for Acoustic Eigenmode Extraction From Boundary Element Models
,”
ASME J. Vibr. Acoust.
0739-3717,
112
, pp.
392
398
.
20.
Ali
,
A.
,
Rajakumar
,
C.
, and
Yunus
,
S. M.
, 1991, “
On the Formulation of the Acoustic Boundary Element Eigenvalue Problems
,”
Int. J. Numer. Methods Eng.
,
31
, pp.
1271
1282
. 0029-5981
21.
Kirkup
,
S. M.
, and
Amini
,
S.
, 1993, “
Solution of the Helmholtz Eigenvalue Problem Via the Boundary Element Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
36
, pp.
321
330
.
22.
Chen
,
J. T.
,
Liu
,
L. W.
, and
Hong
,
H. -K.
, 2003, “
Spurious and True Eigensolutions of Helmholtz BIEs and BEMs for a Multiply Connected Problem
,”
Proc. R. Soc. London, Ser. A
0950-1207,
459
, pp.
1891
1924
.
23.
Kuo
,
S. R.
,
Chen
,
J. T.
, and
Huang
,
C. X.
, 2000, “
Analytical Study and Numerical Experiments for True and Spurious Eigensolutions of a Circular Cavity Using the Real Part Dual BEM
,”
Int. J. Numer. Methods Eng.
0029-5981,
48
(
9
), pp.
1401
1422
.
24.
Alves
,
C. J.
, and
Antunes
,
P. R.
, 2005, “
The method of Fundamental Solutions Applied to the Calculation of Eigenfrequencies and Eigenmodes of 2D Simply Connected Shapes
,”
Comput., Mater., Continua
1546-2218,
2
(
4
), pp.
251
265
.
25.
Pierce
,
A. D.
, 1989,
Acoustics: An Introduction to Its Physical Principles and Applications
,
Acoustical Society of America
,
New York
.
26.
Morse
,
P. M.
, 1981,
Vibration and Sound
,
Acoustical Society of America
,
New York
.
27.
Beranek
,
L. L.
, 1996,
Acoustics
,
Acoustical Society of America
,
New York
.
28.
Nédélec
,
J. -C.
, 2001,
Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems
,
Springer-Verlag
,
Berlin
.
29.
Kellog
,
O. D.
, 1929,
Foundations of Potential Theory
,
Springer
,
Berlin
.
30.
Mikhlin
,
S. G.
, 1957,
Integral Equations
,
Pergamon
,
Oxford
.
31.
Abramowitz
,
M.
, and
Stegun
,
I. A.
, 1970,
Handbook of Mathematical Functions
,
Dover
,
New York
.
32.
Ha Duong
,
T.
, 1987, “
Équations Intégrales pour la Résolution Num´erique de Problèmes de Diffraction d’Ondes Acoustiques dans R3
,” Ph.D. thesis, Universit´e Pierre et Marie Curie, Paris VI, France.
33.
Hamdi
,
M. A.
, 1982, “
Formulation Variationelle par Équations Intégrales pour le Calcul de Champs Acoustiques Lin´eaires Proches et Lointains
,” Ph.D. thesis, Université de Technologie de Compiègne, France.
34.
Ciarlet
,
P. G.
, 1978,
The Finite Element Method for Elliptic Problems
,
North-Holland
,
Amsterdam
.
35.
Conca
,
C.
,
Duran
,
M.
, and
Rappaz
,
J.
, 1998, “
Rate of Convergence Estimates for the Spectral Approximation of a Generalized Eigenvalue Problem
,”
Numer. Math.
0029-599X,
79
, pp.
349
370
.
36.
Hamdi
,
M. A.
, 1984, “
Rayonnement de structure à géométrie axisymétrique
,”
9ème Colloque d’Acoustique Aéronautique
,
Compiègne
,
France
.
37.
Durán
,
M.
,
Miguez
,
M.
, and
Nédélec
,
J. -C.
, 2001, “
Numerical Stability in the Calculation of Eigenfrequencies Using Integral Equations
,”
J. Comput. Appl. Math.
0377-0427,
130
, pp.
323
336
.
38.
Bendali
,
A.
, and
Devys
,
C.
, 1986, “
Calcul numérique du rayonnement de cornets électromagnétiques dont l’ouverture est partiellement remplie par un diélectrique
,”
L’Onde électrique
,
66
, pp.
77
81
.
39.
Christiansen
,
S. H.
, and
Nédélec
,
J. -C.
, 2000, “
“Des préconditionneurs pour la résolution numérique des équations intégrales de frontière de l’acoustique
,”
C. R. Acad. Sci., Ser. I: Math.
0764-4442,
330
, pp.
617
622
.
You do not currently have access to this content.