A novel vibration control method utilizing magnetically mounted piezoelectric elements is described. Piezoelectric elements are bonded to permanent magnets, termed here as control mounts, which are attached to the surface of a steel beam through their magnetic attraction. The magnetic-piezoelectric control mounts are an alternative to traditional epoxy attachment methods for piezoelectric elements which allows for easy in-the-field reconfiguration. In model and laboratory measurements, the beam is driven through base excitation and the resonant shunt technique is utilized to demonstrate the attenuation characteristics of two magnetic-piezoelectric control mounts. The coupled system is discretized using a Galerkin finite element model that incorporates the tangential and vertical contact stiffnesses of the beam-magnet interface. The vibration reduction provided by the control mounts using a single magnet are compared to those designed with a magnetic array that alternates the magnetic dipoles along the length of the mount. Even though each design uses the same magnet thickness, the alternating magnetic configuration's interfacial contact stiffness is over 1.5 and 4 times larger in the tangential and vertical directions, respectively, than that of the single magnet, resulting in increased vibration reduction. Measured and simulated results show that the magnetic-piezoelectric control mounts reduced the beam's tip velocity by as much as 3.0 dB and 3.1 dB, respectively. The design tradeoffs that occur when replacing the traditional epoxy layer with a magnet are also presented along with some methods that could improve the vibration reduction performance of the control mounts. This analysis shows that the control mounts attenuate significant vibration despite having an imperfect bond with the beam, thus providing a viable and adaptable alternative to traditional piezoelectric attachment methods.

References

1.
Forward
,
R. L.
,
1979
, “
Electronic Damping of Vibrations in Optical Structures
,”
J. Appl. Opt.
,
18
(
5
), pp.
690
697
.10.1364/AO.18.000690
2.
Uchino
,
K.
, and
Ishiii
,
T.
,
1988
, “
Mechanical Damper Using Piezoelectric Ceramics
,”
J. Ceram. Soc. Jpn.
,
96
(
8
), pp.
863
867
.10.2109/jcersj.96.863
3.
Lesieutre
,
G. A.
, and
Davis
,
C. L.
,
1991
, “
Frequency-Shaped Passive Damping Using Resistively-Shunted Piezoceramics
,”
Proceedings of the Conference on Active Materials and Structures
, pp.
355
358
.
4.
Hagood
,
N. W.
, and
Crawley
,
E. F.
,
1991
, “
Experimental Investigation of Passive Enhancement of Damping in Space Structures
,”
J. Guid. Control Dyn.
,
14
(
6
), pp.
1100
1109
.10.2514/3.20763
5.
Davis
,
C. L.
, and
Lesieutre
,
G. A.
,
2000
, “
An Actively Tuned Solid-State Vibration Absorber Using Capacitive Shunting of Piezoelectric Stiffness
,”
J. Sound Vib.
,
232
(
3
), pp.
601
617
.10.1006/jsvi.1999.2755
6.
Hagood
,
N. W.
, and
von Flotow
,
A.
,
1991
, “
Damping of Structural Vibrations With Piezoelectric Materials and Passive Electrical Networks
,”
J. Sound Vib.
,
146
(
2
), pp.
243
268
.10.1016/0022-460X(91)90762-9
7.
Wu
,
S.
,
1996
, “
Piezoelectric Shunts With Parallel RL Circuit for Structural Damping and Vibration Control
,”
Proc. SPIE
,
2720
, pp.
259
269
.10.1117/12.239093
8.
Wu
,
S.
, and
Bicos
,
A. S.
,
1997
, “
Structural Vibration Damping Experiments Using Improved Piezoelectric Shunts
,”
Proc. SPIE
,
3045
, pp.
40
50
.10.1117/12.274217
9.
Caruso
,
G.
,
2001
, “
A Critical Analysis of Electric Shunt Circuits Employed in Piezoelectric Passive Vibration Damping
,”
Smart Mater. Struct.
,
10
, pp.
1059
1068
.10.1088/0964-1726/10/5/322
10.
Park
,
C. H.
, and
Inman
,
D. J.
,
2003
, “
Enhanced Piezoelectric Shunt Design
,”
Shock Vib.
,
10
(
2
), pp.
127
133
.
11.
Clark
,
W. W.
,
2000
, “
Vibration Control With State-Switched Piezoelectric Materials
,”
J. Intell. Mater. Syst. Struct.
,
11
(
4
), pp.
263
271
.10.1106/18CE-77K4-DYMG-RKBB
12.
Richard
,
C.
,
Guyomar
,
D.
,
Audigier
,
D.
, and
Ching
,
G.
,
1999
, “
Semi-Passive Damping Using Continuous Switching of a Piezoelectric Device
,”
Proc. SPIE
,
3672
, pp.
104
111
.10.1117/12.349773
13.
Richard
,
C.
,
Guyomar
,
D.
,
Audigier
,
D.
, and
Bassaler
,
H.
,
2000
, “
Enhanced Semi Passive Damping Using Continuous Switching of a Piezoelectric Device
,”
Smart Struct. Mater.
,
3989
, pp.
288
299
.10.1117/12.384569
14.
Corr
,
L.
, and
Clark
,
W. W.
,
2002
, “
Comparison of Low-Frequency Piezoelectric Switching Shunt Techniques for Structural Damping
,”
Smart Mater. Struct.
,
11
, pp.
370
376
.10.1088/0964-1726/11/3/307
15.
Corr
,
L. R.
, and
Clark
,
W. W.
,
2003
, “
A Novel Semi-Active Multi-Modal Vibration Control Law for a Piezoceramic Actuator
,”
J. Vib. Acoust.
,
125
, pp.
214
222
.10.1115/1.1547682
16.
Collinger
,
J. C.
, and
Wickert
,
J. A.
,
2007
, “
Adaptive Piezoelectric Vibration Control With Synchronized Switching
,”
Proceedings of IMECE 2007: 2007 ASME International Mechanical Engineering Congress and Exposition
,
Seattle, WA, Nov. 11–15, Paper No. IMECE2007-41427, http://dx.doi.org/10.1115/IMECE2007-41427
17.
Collinger
,
J. C.
,
Wickert
,
J. A.
, and
Corr
,
L. R.
,
2009
, “
Adaptive Piezoelectric Vibration Control With Synchronized Switching
,”
ASME J. Dyn. Sys. Meas. and Control
,
131
, p.
041006
.10.1115/1.3117189
18.
Fanson
,
J. L.
, and
Caughey
,
T. K.
,
1990
, “
Positive Position Feedback Control for Large Space Structures
,”
AIAA J.
,
28
(
4
), pp.
717
724
.10.2514/3.10451
19.
Alkhatib
,
R.
, and
Golnaraghi
,
M. F.
,
2003
, “
Active Structural Vibration Control: A Review
,”
Shock Vib. Dig.
,
35
(
5
), pp.
367
383
.10.1177/05831024030355002
20.
Yan
,
Y. J.
, and
Yam
,
L. H.
,
2002
, “
Optimal Design of Number and Locations of Actuators in Active Vibration Control of a Space Truss
,”
Smart Mater. Struct.
,
11
, pp.
496
503
.10.1088/0964-1726/11/4/303
21.
Crawley
,
E. F.
, and
Anderson
,
E. H.
,
1990
, “
Detailed Models of Piezoceramic Actuators of Beams
,”
J. Intell. Mater. Syst. Struct.
,
1
, pp.
4
25
.10.1177/1045389X9000100102
22.
Agrawal
,
B. N.
, and
Treanor
,
K. E.
,
1999
, “
Shape Control of a Beam Using Piezoelectric Actuators
,”
Smart Mater. Struct.
,
8
, pp.
729
740
.10.1088/0964-1726/8/6/303
23.
Barboni
,
R.
,
Mannini
,
A.
,
Fantini
,
E.
, and
Gaudenzi
,
P.
,
2000
, “
Optimal Placement of PZT Actuators for the Control of Beam Dynamics
,”
Smart Mater. Struct.
,
9
, pp.
110
120
.10.1088/0964-1726/9/1/312
24.
Main
,
J. A.
,
Garcia
,
E.
, and
Howard
,
D.
,
1994
, “
Optimal Placement and Sizing of Paired Piezoactuators in Beams and Plates
,”
Smart Mater. Struct.
,
3
, pp.
373
381
.10.1088/0964-1726/3/3/013
25.
Collinger
,
J. C.
,
Messner
,
W. C.
, and
Wickert
,
J. A.
,
2008
, “
Vibration Control With Magnetically Mounted Piezoelectric Actuators
,”
Proceedings of IMECE 2008: 2008 ASME International Mechanical Engineering Congress and Exposition
, Boston, MA, Oct. 31–Nov. 6, Paper No. IMECE2008-67369, http://dx.doi.org/10.1115/IMECE2008-67369
26.
Collinger
,
J. C.
,
2008
, “
Adaptive Vibration Control Using Magnetically Mounted Piezoelectric Elements
,” Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA.
27.
Hawwa
,
M. A.
,
Al-Nassar
,
Y. N.
, and
Al-Oahtani
,
H. M.
,
2011
, Piezoelectric Damping Device. Patent Application No. US 2011/0084572 A1.
28.
Tangpong
,
X. W.
,
Wickert
,
J. A.
, and
Akay
,
A.
,
2008
, “
Distributed Friction Damping of Traveling Wave Vibration in Rods
,”
Philos. Trans. R. Soc. London
,
366
, pp.
811
827
.10.1098/rsta.2007.2128
29.
Menq
,
C. H.
,
Bielak
,
J.
, and
Griffin
,
J. H.
,
1986
, “
The Influence of Microslip on Vibratory Response, Part 1: A New Microslip Model
,”
J. Sound Vib.
,
107
, pp.
279
293
.10.1016/0022-460X(86)90238-5
30.
Tangpong
,
X. W.
,
Wickert
,
J. A.
, and
Akay
,
A.
,
2008
, “
Finite Element Model for Hysteretic Friction Damper of Traveling Wave Vibration in Axisymmetric Structures
,”
J. Vib. Acoust.
,
130
(
1
), p.
011005
.10.1115/1.2775519
31.
Girhammer
,
U. A.
, and
Gopu
,
V. K. A.
,
1993
, “
Composite Beam-Columns With Interlayer Slip—Exact Analysis
,”
J. Struct. Eng.
,
119
, pp.
1265
1282
.10.1061/(ASCE)0733-9445(1993)119:4(1265)
32.
Heuer
,
R.
, and
Adam
,
C.
,
2000
, “
Piezoelectric Vibrations of Composite Beams With Interlayer Slip
,”
Acta Mech.
,
140
, pp.
247
263
.10.1007/BF01182514
33.
Wu
,
Y.
,
Xu
,
R.
, and
Chen
,
W.
,
2007
, “
Free Vibrations of the Partial-Interaction Composite Members With Axial Force
,”
J. Sound Vib.
,
299
, pp.
1074
1093
.10.1016/j.jsv.2006.08.008
34.
Hagood
,
N. W.
,
Chung
,
W. H.
, and
von Flotow
,
A.
,
1990
, “
Modelling of Piezoelectric Actuator Dynamics for Active Structural Control
,”
J. Intell. Mater. Syst. Struct.
,
1
(
1
), pp.
327
354
.10.1177/1045389X9000100305
35.
IEEE
,
1988
,
An American National Standard: IEEE Standard on Piezoelectricity
,
The Institute of Electrical and Electronics Engineers, Inc.
,
New York, NY
.
36.
Becker
,
E. B.
,
Carey
,
G. F.
, and
Oden
,
J. T.
,
1981
,
Finite Elements: An Introduction
, 1st ed., Vol.
1
,
Prentice-Hall, Inc.
,
Englewood Cliffs, NJ
.
37.
Hollkamp
,
J. J.
, and
Starchville
,
T. F.
, J
r.,
1994
, “
A Self-Tuning Piezoelectric Vibration Absorber
,”
J. Intell. Mater. Syst. Struct.
,
5
, pp.
559
566
.10.1177/1045389X9400500412
38.
Trumper
,
D. L.
,
Williams
,
M. E.
, and
Nguyen
,
T. H.
,
1993
, “
Magnet Arrays for Synchronous Motors
,”
Industry Applications Society Annual Meeting, Conference Record of the IEEE
, Vol.
1
, pp.
9
18
.
39.
Jang
,
S. M.
,
Lee
,
S. H.
, and
Jeong
,
S. S.
,
2002
, “
Characteristic Analysis of Eddy-Current Brake System Using the Linear Halbach Array
,”
IEEE Trans. Magn.
,
38
(
5
), pp.
2994
2996
.10.1109/TMAG.2002.803191
You do not currently have access to this content.