A semi-analytical method is presented in this paper for stability analysis of milling with a variable spindle speed (VSS), periodically modulated around a nominal spindle speed. Taking the regenerative effect into account, the dynamics of the VSS milling is governed by a delay-differential equation (DDE) with time-periodic coefficients and a time-varying delay. By reformulating the original DDE in an integral-equation form, one time period is divided into a series of subintervals. With the aid of numerical integrations, the transition matrix over one time period is then obtained to determine the milling stability by using Floquet theory. On this basis, the stability lobes consisting of critical machining parameters can be calculated. Unlike the constant spindle speed (CSS) milling, the time delay for the VSS is determined by an integral transcendental equation which is accurately calculated with an ordinary differential equation (ODE) based method instead of the formerly adopted approximation expressions. The proposed numerical integration method is verified with high computational efficiency and accuracy by comparing with other methods via a two-degree-of-freedom milling example. With the proposed method, this paper details the influence of modulation parameters on stability diagrams for the VSS milling.

References

1.
Quintana
,
G.
, and
Ciurana
,
J.
,
2011
, “
Chatter in Machining Processes: A Review
,”
Int. J. Mach. Tools Manuf.
,
51
(
5
), pp.
363
376
.
2.
Altintas
,
Y.
, and
Weck
,
M.
,
2004
, “
Chatter Stability of Metal Cutting and Grinding
,”
CIRP Ann. Manuf. Technol.
,
53
(
2
), pp.
619
642
.
3.
Balachandran
,
B.
,
2001
, “
Nonlinear Dynamics of Milling Processes
,”
Philos. Trans. R. Soc. A
,
359
(
1781
), pp.
793
819
.
4.
Balachandran
,
B.
, and
Gilsinn
,
D.
,
2005
, “
Non-Linear Oscillations of Milling
,”
Math. Comput. Model. Dyn. Syst.
,
11
(
3
), pp.
273
290
.
5.
Long
,
X. H.
,
Balachandran
,
B.
, and
Mann
,
B. P.
,
2007
, “
Dynamics of Milling Processes With Variable Time Delays
,”
Nonlinear Dyn.
,
47
(
1–3
), pp.
49
63
.
6.
Long
,
X. H.
, and
Balachandran
,
B.
,
2007
, “
Stability Analysis for Milling Process
,”
Nonlinear Dyn.
,
49
(
3
), pp.
349
359
.
7.
Altintas
,
Y.
, and
Budak
,
E.
,
1995
, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann. Manuf. Technol.
,
44
(
1
), pp.
357
362
.
8.
Budak
,
E.
, and
Altintas
,
Y.
,
1998
, “
Analytical Prediction of Chatter Stability in Milling—Part I: General Formulation
,”
ASME J. Dyn. Syst. Meas. Control
,
120
(
1
), pp.
22
30
.
9.
Merdol
,
S. D.
, and
Altintas
,
Y.
,
2004
, “
Multi Frequency Solution of Chatter Stability for Low Immersion Milling
,”
ASME J. Manuf. Sci. Eng.
,
126
(
3
), pp.
459
466
.
10.
Bayly
,
P. V.
,
Halley
,
J. E.
,
Mann
,
B. P.
, and
Davies
,
M. A.
,
2003
, “
Stability of Interrupted Cutting by Temporal Finite Element Analysis
,”
ASME J. Manuf. Sci. Eng.
,
125
(
2
), pp.
220
225
.
11.
Mann
,
B. P.
, and
Patel
,
B. R.
,
2010
, “
Stability of Delay Equations Written as State Space Models
,”
J. Vib. Control
,
16
(
7–8
), pp.
1067
1085
.
12.
Olgac
,
N.
, and
Sipahi
,
R.
,
2005
, “
A Unique Methodology for Chatter Stability Mapping in Simultaneous Machining
,”
ASME J. Manuf. Sci. Eng.
,
127
(
4
), pp.
791
800
.
13.
Insperger
,
T.
, and
Stépán
,
G.
,
2002
, “
Semi-Discretization Method for Delayed Systems
,”
Int. J. Numer. Methods Eng.
,
55
(
5
), pp.
503
518
.
14.
Insperger
,
T.
, and
Stépán
,
G.
,
2004
, “
Updated Semi-Discretization Method for Periodic Delay-Differential Equations With Discrete Delay
,”
Int. J. Numer. Methods Eng.
,
61
(
1
), pp.
117
141
.
15.
Insperger
,
T.
,
Stépán
,
G.
, and
Turi
,
J.
,
2008
, “
On the Higher-Order Semi-Discretizations for Periodic Delayed Systems
,”
J. Sound Vib.
,
313
(
1–2
), pp.
334
341
.
16.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
,
2010
, “
A Full-Discretization Method for Prediction of Milling Stability
,”
Int. J. Mach. Tools Manuf.
,
50
(
5
), pp.
502
509
.
17.
Butcher
,
E. A.
,
Bobrenkov
,
O. A.
,
Bueler
,
E.
, and
Nindujarla
,
P.
,
2009
, “
Analysis of Milling Stability by the Chebyshev Collocation Method: Algorithm and Optimal Stable Immersion Levels
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
3
), p.
031003
.
18.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
,
2011
, “
Numerical Integration Method for Prediction of Milling Stability
,”
ASME J. Manuf. Sci. Eng.
,
133
(
3
), p.
031005
.
19.
Ozoegwu
,
C. G.
,
2014
, “
Least Squares Approximated Stability Boundaries of Milling Process
,”
Int. J. Mach. Tools Manuf.
,
79
, pp.
24
30
.
20.
Niu
,
J.
,
Ding
,
Y.
,
Zhu
,
L.
, and
Ding
,
H.
,
2014
, “
Runge–Kutta Methods for a Semi-Analytical Prediction of Milling Stability
,”
Nonlinear Dyn.
,
76
(
1
), pp.
289
304
.
21.
Ding
,
Y.
,
Zhang
,
X.
, and
Ding
,
H.
,
2015
, “
A Legendre Polynomials Based Method for Stability Analysis of Milling Processes
,”
ASME J. Vib. Acoust.
,
137
(
2
), p.
024504
.
22.
Altintas
,
Y.
, and
Chan
,
P. K.
,
1992
, “
In-Process Detection and Suppression of Chatter in Milling
,”
Int. J. Mach. Tools Manuf.
,
32
(
3
), pp.
329
347
.
23.
Tsao
,
T. C.
,
McCarthy
,
M. W.
, and
Kapoor
,
S. G.
,
1993
, “
A New Approach to Stability Analysis of Variable Speed Machining Systems
,”
Int. J. Mach. Tools Manuf.
,
33
(
6
), pp.
791
808
.
24.
Jayaram
,
S.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2000
, “
Analytical Stability Analysis of Variable Spindle Speed Machining
,”
ASME J. Manuf. Sci. Eng.
,
122
(
3
), pp.
391
397
.
25.
Sastry
,
S.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Dullerud
,
G. E.
,
2001
, “
Chatter Stability Analysis of the Variable Speed Face-Milling Process
,”
ASME J. Manuf. Sci. Eng.
,
123
(
4
), pp.
753
756
.
26.
Sastry
,
S.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2002
, “
Floquet Theory Based Approach for Stability Analysis of the Variable Speed Face-Milling Process
,”
ASME J. Manuf. Sci. Eng.
,
124
(
1
), pp.
10
17
.
27.
Insperger
,
T.
, and
Stepan
,
G.
,
2004
, “
Stability Analysis of Turning With Periodic Spindle Speed Modulation Via Semidiscretization
,”
J. Vib. Control
,
10
(
12
), pp.
1835
1855
.
28.
Zatarain
,
M.
,
Bediaga
,
I.
,
Munoa
,
J.
, and
Lizarralde
,
R.
,
2008
, “
Stability of Milling Processes With Continuous Spindle Speed Variation: Analysis in the Frequency and Time Domains, and Experimental Correlation
,”
CIRP Ann. Manuf. Technol.
,
57
(
1
), pp.
379
384
.
29.
Long
,
X.
, and
Balachandran
,
B.
,
2010
, “
Stability of Up-Milling and Down-Milling Operations With Variable Spindle Speed
,”
J. Vib. Control
,
16
(
7–8
), pp.
1151
1168
.
30.
Seguy
,
S.
,
Insperger
,
T.
,
Arnaud
,
L.
,
Dessein
,
G.
, and
Peigné
,
G.
,
2010
, “
On the Stability of High-Speed Milling With Spindle Speed Variation
,”
Int. J. Adv. Manuf. Technol.
,
48
(
9–12
), pp.
883
895
.
31.
Séguy
,
S.
,
Insperger
,
T.
,
Arnaud
,
L.
,
Dessein
,
G.
, and
Peigné
,
G.
,
2011
, “
Suppression of Period Doubling Chatter in High-Speed Milling by Spindle Speed Variation
,”
Mach. Sci. Technol.
,
15
(
2
), pp.
153
171
.
32.
Xie
,
Q.
, and
Zhang
,
Q.
,
2012
, “
Stability Predictions of Milling With Variable Spindle Speed Using an Improved Semi-Discretization Method
,”
Math. Comput. Simul.
,
85
, pp.
78
89
.
33.
Liang
,
X. G.
,
Yao
,
Z. Q.
,
Luo
,
L.
, and
Hu
,
J.
,
2013
, “
An Improved Numerical Integration Method for Predicting Milling Stability With Varying Time Delay
,”
Int. J. Adv. Manuf. Technol.
,
68
(
9–12
), pp.
1967
1976
.
34.
Totis
,
G.
,
Albertelli
,
P.
,
Sortino
,
M.
, and
Monno
,
M.
,
2014
, “
Efficient Evaluation of Process Stability in Milling With Spindle Speed Variation by Using the Chebyshev Collocation Method
,”
J. Sound Vib.
,
333
(
3
), pp.
646
668
.
35.
Altintas
,
Y.
,
2012
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
,
New York
.
36.
Yang
,
W. Y.
,
Cao
,
W.
,
Chung
,
T.-S.
, and
Morris
,
J.
,
2005
,
Applied Numerical Methods Using MATLAB
,
Wiley-Interscience
,
Hoboken, NJ
.
37.
Insperger
,
T.
, and
Stépán
,
G.
,
2011
,
Semi-Discretization for Time-Delay Systems: Stability and Engineering Applications
,
Springer-Verlag
,
New York
.
38.
Farkas
,
M.
,
1994
,
Periodic Motions
,
Springer-Verlag
,
New York
.
39.
Bayly
,
P. V.
,
Mann
,
B. P.
,
Schmitz
,
T. L.
,
Peters
,
D. A.
,
Stepan
,
G.
, and
Insperger
,
T.
,
2002
, “
Effects of Radial Immersion and Cutting Direction on Chatter Instability in End-Milling
,”
ASME
Paper No. IMECE2002-39116.
40.
Altintas
,
Y.
,
Engin
,
S.
, and
Budak
,
E.
,
1999
, “
Analytical Stability Prediction and Design of Variable Pitch Cutters
,”
ASME J. Manuf. Sci. Eng.
,
121
(
2
), pp.
173
178
.
You do not currently have access to this content.