In this paper, a novel vibration isolator based on a foldable cylinder with a torsional buckling pattern, which is also called Kresling's pattern, is proposed, and the performance of the proposed isolator in terms of preventing structural vibration is numerically evaluated. It is known that foldable cylinders with a torsional buckling pattern provide bistable folding motions under specific conditions. For simplification, a foldable cylinder with a torsional buckling pattern is modeled using horizontal, longitudinal, and diagonal truss elements connected by rotational joints and enforced by rigid frames, which are also called Rahmen, while maintaining the bistability of the structure. Additional linear springs are incorporated into the structure in order to obtain a nonlinear spring with quasi-zero-stiffness characteristics. It is numerically established that: (i) the resonance of the combined structure is effectively suppressed and (ii) the structure decreases the vibration response even at high frequencies when it is used around the equilibrium position at which the spring stiffness is quasi-zero.

References

1.
Alabuzhev
,
P.
,
Gritchin
,
A.
,
Kim
,
L.
,
Migirenko
,
G.
,
Chon
,
V.
, and
Stepanov
,
P.
,
1989
,
Vibration Protecting and Measuring Systems With Quasi-Zero Stiffness
,
Hemisphere Publishing Corporation
, New York.
2.
Kovacic
,
I.
,
Brennan
,
M. J.
, and
Waters
,
T. P.
,
2008
, “
A Study of a Nonlinear Vibration Isolator With a Quasi-Zero Stiffness Characteristic
,”
J. Sound Vib.
,
315
(
3
), pp.
700
711
.
3.
Carrella
,
A.
,
Brennan
,
M. J.
, and
Waters
,
T. P.
,
2007
, “
Static Analysis of a Passive Vibration Isolator With Quasi-Zero Stiffness Characteristic
,”
J. Sound Vib.
,
301
(3–5), pp.
678
689
.
4.
Carrella
,
A.
,
2010
,
Passive Vibration Isolators With High-Static-Low-Dynamic-Stiffness
,
VDM-Verlag
, Saarbrücken, Germany.
5.
Winterflood
,
J.
,
Barber
,
T.
, and
Blair
,
D. G.
,
2002
, “
Using Euler Buckling Springs for Vibration Isolation
,”
Classical Quantum Gravity
,
19
(
7
), pp.
1639
1645
.
6.
Lee
,
C. M.
,
Goverdovskiy
,
V. N.
, and
Temnikov
,
A. I.
,
2007
, “
Design of Springs With Negative Stiffness to Improve Vehicle Driver Vibration Isolation
,”
J. Sound Vib.
,
302
(4–5), pp.
865
874
.
7.
Plaut
,
R. H.
,
Sidbury
,
J. E.
, and
Virgin
,
L. N.
,
2005
, “
Analysis of Buckled and Pre-Bent Fixed-End Columns Used as Vibration Isolators
,”
J. Sound Vib.
,
283
(3–5), pp.
1216
1228
.
8.
Fulcher
,
B. A.
,
Shahan
,
D. W.
,
Haberman
,
M. R.
,
Seepersad
,
C. C.
, and
Wilson
,
P. S.
,
2014
, “
Analytical and Experimental Investigation of Buckled Beams as Negative Stiffness Elements for Passive Vibration and Shock Isolation Systems
,”
ASME J. Vib. Acoust.
,
136
(
6
), p.
031009
.
9.
Fujita
,
E.
,
1999
, “
New Vibration System Using a Magneto-Spring
,”
J. Magn. Soc. Jpn.
,
23
(
3
), pp.
840
846
(in Japanese).
10.
Fujita
,
E.
,
Nakagawa
,
N.
,
Ogura
,
Y.
, and
Kojima
,
S.
,
2000
, “
An Experimental Study for a Nonlinear Combination Spring Using a Magnet-Spring
,”
Trans. Jpn. Soc. Mech. Eng., Ser. C
,
66
(
645
), pp.
1445
1452
(in Japanese).
11.
Nakagawa
,
N.
,
Fujita
,
E.
,
Sugimoto
,
E.
,
Kojima
,
S.
, and
Otsubo
,
K.
,
2001
, “
Pendulum Suspension System With Quasi-Zero Spring Constant Using a Magnet-Spring
,”
Bull. Grad. Sch. Eng., Hiroshima Univ.
,
50
(
1
), pp.
9
14
.
12.
Mizuno
,
T.
,
2002
, “
Vibration Isolation System Using Zero-Power Magnetic Suspension
,”
IFAC Proc. Vols.
,
35
(
1
), pp. 25–30.
13.
Hoque
,
M. E.
,
Takasaki
,
M.
,
Ishino
,
Y.
, and
Mizuno
,
T.
,
2006
, “
Development of a Three-Axis Active Vibration Isolator Using Zero-Power Control
,”
IEEE/ASME Trans. Mechatronics
,
11
(
4
), pp.
462
470
.
14.
Robertson
,
W. S.
,
Kidner
,
M. R. F.
,
Cazzolato
,
B. S.
, and
Zander
,
A. C.
,
2009
, “
Theoretical Design Parameters for a Quasi-Zero Stiffness Magnetic Spring for Vibration Isolation
,”
J. Sound Vib.
,
326
(1–2), pp.
88
103
.
15.
Xu
,
D.
,
Yu
,
Q.
,
Zhou
,
J.
, and
Bishop
,
S. R.
,
2013
, “
Theoretical and Experimental Analysis of a Nonlinear Magnetic Vibration Isolator With Quasi-Zero-Stiffness Characteristic
,”
J. Sound Vib.
,
332
(
14
), pp.
3377
3389
.
16.
Kresling
,
B.
,
2001
, “
Folded Tubes as Compared to Kikko (Tortoise-Shell) Bamboo
,”
Origami 3
,
AK Peters
, Natick, MA, pp.
197
207
.
17.
Nojima
,
T.
,
2002
, “
Modeling of Folding Patterns in Flat Membranes and Cylinders by Origami
,”
Int. J. Jpn. Soc. Mech. Eng.
,
45
(
1
), pp.
364
370
.
18.
Hunt
,
G. W.
, and
Ario
,
I.
,
2005
, “
Twist Buckling and the Foldable Cylinder: An Exercise in Origami
,”
Int. J. Non-Linear Mech.
,
40
(
6
), pp.
833
843
.
19.
Kresling
,
B.
,
2008
, “
Natural Twist Buckling in Shells: From the Hawkmoth's Bellows to the Deployable Kresling-Pattern and Cylindrical Miura-ori
,”
6th International Conference on Computation of Shell and Spatial Structures (IASS-IACM 2008): Spanning Nano to Mega
, Ithaca, NY, May 28–31.
20.
Hagiwara
,
I.
,
Ishida
,
S.
, and
Uchida
,
H.
,
2013
, “
Nonlinear Springs and Vibration Insulators
,” Japanese Patent Application No. 2013-220548.
21.
Ishida
,
S.
,
Uchida
,
H.
, and
Hagiwara
,
I.
,
2014
, “
Vibration Isolators Using Nonlinear Spring Characteristics of Origami-Based Foldable Structures
,”
J. Jpn. Soc. Mech. Eng.
,
80
(
820
), p.
DR0384
(in Japanese).
22.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1994
, “
The Folding of Triangulated Cylinders, Part I: Geometric Considerations
,”
ASME J. Appl. Mech.
,
61
(
4
), pp.
773
777
.
23.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1994
, “
The Folding of Triangulated Cylinders, Part II: The Folding Process
,”
ASME J. Appl. Mech.
,
61
(
4
), pp.
778
783
.
24.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1996
, “
The Folding of Triangulated Cylinders, Part III: Experiments
,”
ASME J. Appl. Mech.
,
63
(
1
), pp.
77
83
.
25.
Nagashima
,
G.
, and
Nojima
,
T.
,
1999
, “
Development of Foldable Triangulated Cylinder
,”
7th JSME Materials and Processing Conference (M&P)
, pp.
153
154
(in Japanese).
26.
Jianguo
,
C.
,
Xiaowei
,
D.
,
Ya
,
Z.
,
Jian
,
F.
, and
Yongming
,
T.
,
2015
, “
Bistable Behavior of the Cylindrical Origami Structure With Kresling Pattern
,”
ASME J. Mech. Des.
,
137
(
6
), p.
061406
.
27.
Natori
,
M. C.
,
Katsumata
,
N.
,
Yamakawa
,
H.
,
Sakamoto
,
H.
, and
Kishimoto
,
N.
,
2013
, “
Conceptual Model Study Using Origami for Membrane Space Structures
,”
ASME
Paper No. DETC2013-13490.
You do not currently have access to this content.