We have previously shown how Thévenin's theorem may be used to solve problems in linear acoustic scattering from a mobile body, by forming the solution as a superposition of the field scattered from the body when held immobile and the solution for radiation from the body in a quiescent field (Williams, R. P. and Hall, N. A., 2016, “Thévenin Acoustics” J. Acoust. Soc. Am., 140(6), pp. 4449–4455). For problems involving scattering from multiple mobile bodies, the approach can be extended by using multiport network formalism. The use of network formalism allows for the effects of multiple scattering to be treated using analogous circuit models, facilitating the integration of scattering effects into circuit-based models of acoustic transducers. In this paper, we first review Thévenin's theorem for electrical and linear acoustic systems, and discuss the Thévenin-inspired approach to scattering from one rigid, mobile cylinder. Two-port formalism is introduced as a way to address problems involving two scatterers. The method is illustrated using the problem of scattering from a pair of rigid, mobile cylinders in an ideal plane progressive wave. The velocities of the cylinders and the resultant pressure field in response to the incoming wave are found. Unique features of the method compared to more conventional approaches are discussed.

References

1.
Williams
,
R. P.
, and
Hall
,
N. A.
,
2016
, “
Thévenin Acoustics
,”
J. Acoust. Soc. Am.
,
140
(
6
), pp.
4449
4455
.
2.
Hayt
,
W.
, and
Kemmerly
,
J.
,
1978
,
Engineering Circuit Analysis
,
McGraw-Hill
,
New York
.
3.
Nilsson
,
J. W.
, and
Reidel
,
S. A.
,
2005
,
Electric Circuits
,
Prentice Hall
,
Upper Saddle River, NJ
.
4.
Rizzoni
,
G.
, and
Kearns
,
J.
,
2003
,
Principles and Applications of Electrical Engineering
,
McGraw-Hill
,
New York
.
5.
Haley
,
S. B.
,
1983
, “
The Thévenin Circuit Theorem and Its Generalization to Linear Algebraic Systems
,”
IEEE Trans. Educ.
,
26
(
1
), pp.
34
36
.
6.
Miles
,
J. W.
,
1960
, “
Motion of a Rigid Cylinder Due to a Plane Elastic Wave
,”
J. Acoust. Soc. Am.
,
32
(
12
), pp.
1656
1659
.
7.
Skudrzyk
,
E.
,
1971
,
The Foundations of Acoustics
,
Springer-Verlag
Wien, New York
.
8.
Blackstock
,
D. T.
,
2000
,
Fundamentals of Physical Acoustics
,
John Wiley & Sons, Inc.
,
New York
.
9.
Mitri
,
F. G.
,
2017
, “
Acoustic Radiation Torques on a Pair of Fluid Viscous Cylindrical Particles With Arbitrary Cross-Sections: Circular Cylinders Example
,”
J. Appl. Phys.
,
121
(
14
), p.
144901
.
10.
Wang
,
J.
, and
Dual
,
J.
,
2012
, “
Theoretical and Numerical Calculation of the Acoustic Radiation Force Acting on a Circular Rigid Cylinder Near a Flat Wall in a Standing Wave Excitation in an Ideal Fluid
,”
Ultrasonics
,
52
(
2
), pp.
325
332
.
11.
Gustafson
,
H. L.
, and
Stepanishen
,
P. R.
,
1981
, “
Effects of Multiple Scattering and Acoustic Interactions Among Two Parallel Hydrophones and a Planar Baffle
,”
J. Acoust. Soc. Am.
,
69
(
2
), pp.
380
389
.
12.
Torrent
,
D.
,
Håkansson
,
A.
,
Cervera
,
F.
, and
Sánchez-Dehesa
,
J.
,
2006
, “
Homogenization of Two-Dimensional Clusters of Rigid Rods in Air
,”
Phys. Rev. Lett.
,
96
(
20
), p.
204302
.
13.
Martin
,
P. A.
,
2006
,
Multiple Scattering: Interaction of Time-Harmonic Waves With N Obstacles
,
Cambridge University Press
,
New York
.
14.
Roumeliotis
,
J. A.
,
Ziotopoulos
,
A.-G. P.
, and
Kokkorakis
,
G. C.
,
2001
, “
Acoustic Scattering by a Circular Cylinder Parallel With Another of Small Radius
,”
J. Acoust. Soc. Am.
,
109
(
3
), pp.
870
877
.
15.
Scharstein
,
R. W.
,
1992
, “
Acoustic Scattering From Two Parallel Soft Cylinders
,”
IEEE
Southeastcon '92, Birmingham, AL
, Apr. 12–15, pp.
534
537
.
16.
Twersky
,
V.
,
1952
, “
Multiple Scattering of Radiation by an Arbitrary Configuration of Parallel Cylinders
,”
J. Acoust. Soc. Am.
,
24
(
1
), pp.
42
46
.
17.
Young
,
J. W.
, and
Bertrand
,
J. C.
,
1975
, “
Multiple Scattering by Two Cylinders
,”
J. Acoust. Soc. Am.
,
58
(
6
), pp.
1190
1195
.
18.
Lin
,
W. H.
, and
Chen
,
S. S.
,
1981
, “
On the Added Mass and Radiation Damping of Rod Bundles Oscillating in Compressible Fluids
,”
J. Sound Vib.
,
74
(
3
), pp.
441
453
.
19.
Yousri
,
S. N.
, and
Fahy
,
F. J.
,
1973
, “
Acoustic Radiation by Parallel Cylindrical Bars in Transverse Vibrational Motion
,”
Acta Acust. Acust.
,
29
(
5
), pp.
278
287
.https://www.ingentaconnect.com/contentone/dav/aaua/1973/00000029/00000005/art00006
20.
Hasheminejad
,
S. M.
, and
Azarpeyvand
,
M.
,
2003
, “
Modal Vibrations of an Infinite Cylinder in an Acoustic Halfspace
,”
Int. J. Eng. Sci.
,
41
(
19
), pp.
2253
2271
.
21.
Beranek
,
L. L.
, and
Mellow
,
T. J.
,
2012
,
Acoustics: Sound Fields and Transducers
,
Academic Press
,
Oxford, UK
.
You do not currently have access to this content.