Abstract

In this paper, we report the bending spectrum measured experimentally on oscillating beams with free extremes in a frequency range below and above the cutoff or critical frequency. The experimental setup used to obtain the bending spectrum consisted of a novel and selective method to excite mainly bending modes, as well as an identification process in which oscillation modes other than bending were discarded. For the first time, we identified bending modes above the cutoff frequency for square and circular cross-sectional beams and a good agreement is obtained when the measured frequencies are compared with the predictions of the Timoshenko beam theory (TBT) and those numerically obtained from the elasticity theory by using a three-dimensional finite element method (FEM) calculation. Higher frequency values at which TBT should cease to be valid were not achieved in the experiments. Instead, our experimental results show that TBT remains valid above the cutoff frequency, with an error smaller than 6%.

References

1.
Wang
,
X. Q.
, and
So
,
R. M. C.
,
2015
, “
Timoshenko Beam Theory: A Perspective Based on the Wave-Mechanics Approach
,”
Wave Motion
,
57
, pp.
64
87
. 10.1016/j.wavemoti.2015.03.005
2.
Jun
,
Z.
,
Zhushi
,
R.
, and
Na
,
T.
,
2015
, “
Energy Flow, Energy Density of Timoshenko Beam and Wave Mode Incoherence
,”
J. Sound. Vib.
,
354
, pp.
104
117
. 10.1016/j.jsv.2015.05.029
3.
Eslami
,
M. R.
,
2014
,
Finite Elements Methods in Mechanics
,
Springer International Publishing
,
Switzerland
.
4.
Chen
,
W. R.
,
2012
, “
Parametric Studies on Bending of Twisted Timoshenko Beams Under Complex Loadings
,”
J. Mech.
,
28
(
1
), pp.
N1
N67
. 10.1017/jmech.2012.23
5.
Timoshenko
,
S. P.
,
1921
, “
LXVI. On the Correction for Shear of the Differential Equation for Transverse Vibrations of Prismatic Bars
,”
Philos. Mag.
,
41
(
245
), pp.
744
746
. 10.1080/14786442108636264
6.
Timoshenko
,
S. P.
,
1922
, “
On the Transverse Vibrations of Bars of Uniform Cross Section
,”
Philos. Mag.
,
43
(
253
), pp.
125
131
. 10.1080/14786442208633855
7.
Arash
,
B.
, and
Wang
,
Q.
,
2012
, “
A Review on the Application of Nonlocal Elastic Models in Modeling of Carbon Nanotubes and Graphenes
,”
Comput. Mater. Sci.
,
51
(
1
), pp.
303
313
. 10.1016/j.commatsci.2011.07.040
8.
Stephen
,
N. G.
,
2006
, “
The Second Spectrum of Timoshenko Beam Assessment
,”
J. Sound Vib.
,
292
(
1–2
), pp.
372
389
. 10.1016/j.jsv.2005.08.003
9.
Stephen
,
N. G.
, and
Puchegger
,
S.
,
2006
, “
On the Valid Frequency Range of Timoshenko Beam Theory
,”
J. Sound Vib.
,
297
(
3–5
), pp.
1082
1087
. 10.1016/j.jsv.2006.04.020
10.
Traill-Nash
,
R. W.
, and
Collar
,
A. R.
,
1953
, “
The Effect of Shear Flexibility and Rotary Inertia on the Bending Vibrations of Beams
,”
Q. J. Mech. Appl. Math.
,
6
(
2
), pp.
186
222
. 10.1093/qjmam/6.2.186
11.
Abbas
,
B. A. H.
, and
Thomas
,
J.
,
1977
, “
The Second Frequency Spectrum of Timoshenko Beams
,”
J. Sound Vib.
,
51
(
1
), pp.
123
137
. 10.1016/S0022-460X(77)80118-1
12.
Anderson
,
R. A.
,
1953
, “
Flexural Vibrations in Uniform Beams According to the Timoshenko Theory
,”
ASME J. Appl. Mech.
,
20
, pp.
504
510
.
13.
Hearmon
,
R. F. S.
,
1958
, “
The Influence of Shear and Rotatory Inertia on the Free Flexural Vibration of Wooden Beams
,”
Br. J. Appl. Phys.
,
9
(
10
), pp.
381
388
. 10.1088/0508-3443/9/10/301
14.
Rosinger
,
H.
, and
Ritchie
,
I. G.
,
1977
, “
On Timoshenko’s Correction for Shear in Vibrating Isotropic Beams
,”
J. Phys. D: Appl. Phys.
,
10
(
11
), pp.
1461
1466
. 10.1088/0022-3727/10/11/009
15.
Chan
,
K. T.
,
Wang
,
X. Q.
,
So
,
R. M. C.
, and
Reid
,
S. R.
,
2002
, “
Superposed Standing Waves in a Timoshenko Beam
,”
Proc. R. Soc. London, Ser. A
,
458
(
2017
), pp.
83
108
. 10.1098/rspa.2001.0855
16.
Méndez-Sánchez
,
R. A.
,
Morales
,
A.
, and
Flores
,
J.
,
2005
, “
Experimental Check on the Accuracy of Timoshenko’s Beam Theory
,”
J. Sound Vib.
,
279
, pp.
508
512
. 10.1016/j.jsv.2004.01.050
17.
de Anda
,
A. D.
,
Flores
,
J.
,
Gutiérrez
,
L.
,
Méndez-Sánchez
,
R. A.
,
Monsivais
,
G.
, and
Morales
,
A.
,
2012
, “
Experimental Study of the Timoshenko Beam Theory Predictions
,”
J. Sound Vib.
,
331
(
26
), pp.
5732
5744
. 10.1016/j.jsv.2012.07.041
18.
Monsivais
,
G.
,
de Anda
,
A. D.
,
Flores
,
J.
,
Gutiérrez
,
L.
, and
Morales
,
A.
,
2016
, “
Experimental Study of the Timoshenko Beam Theory Predictions: Further Results
,”
J. Sound Vib.
,
375
, pp.
187
199
. 10.1016/j.jsv.2016.04.003
19.
Hutchinson
,
J. R.
,
1981
, “
Transverse Vibrations of Beams, Exact Versus Approximate Solutions
,”
ASME J. Appl. Mech.
,
48
(
4
), pp.
923
928
. 10.1115/1.3157757
20.
Messina
,
A.
, and
Reina
,
G.
,
2018
, “
On the Frequency Range of Timoshenko Beam Theory
,”
Mech. Adv. Mater. Struc.
, pp.
1
13
. 10.1080/15376494.2018.1511880
21.
Bhaskar
,
A.
,
2009
, “
Elastic Waves in Timoshenko Beams: The ‘lost and Found’ of An Eigenmode
,”
Proc. R. Soc. London, Ser. A
,
465
(
2101
), pp.
239
255
. 10.1098/rspa.2008.0276
22.
Bhashyam
,
G. R.
, and
Prathap
,
G.
,
1981
, “
The Second Frequency Spectrum of Timoshenko Beams
,”
J. Sound Vib.
,
76
(
3
), pp.
407
420
. 10.1016/0022-460X(81)90520-4
23.
Goens
,
E.
,
1931
, “
Über Die Bestimmung Des Elastizitätmoduls Von Stäben Mit Hilfe Von Beigungsschwingungen
,”
Ann. Phys.
,
403
(
6
), pp.
649
678
. 10.1002/(ISSN)1521-3889
24.
Olsson
,
R. G.
,
1934
, “
Die tatsächliche Durchbiegung des gebogenen Balkens
,”
Stahlbau
,
7
(
2
), pp.
13
4
.
25.
Pickett
,
G.
,
1945
, “
Flexural Vibration of Unrestrained Cylinders and Disks
,”
J. Appl. Phys.
,
16
(
12
), pp.
820
831
. 10.1063/1.1707546
26.
Mindlin
,
R. D.
, and
Deresiewicz
,
H.
,
1953
, “
Timoshenko’s Shear Coefficient for Flexural Vibrations of Beams
,” Technical Report O N R Project NR064-388 10, Department of Civil Engineering,
Columbia University
,
New York, NY
.
27.
Cowper
,
G. R.
,
1966
, “
The Shear Coefficient in Timoshenko’s Beam Theory
,”
ASME J. Appl. Mech.
,
33
(
2
), pp.
335
340
. 10.1115/1.3625046
28.
Tanji
,
Y.
,
Moriya
,
H.
,
Shirakawa
,
Y.
, and
Tamate
,
O.
,
1972
, “
Evaluation of Precise Measurements of Young’s modulus and Shear modulus by the Electro-static Driving Method
,”
J. Jap. Inst. Metals
,
36
(
4
), pp.
368
373
. 10.2320/jinstmet1952.36.4_368
29.
Kaneko
,
T.
,
1975
, “
On Timoshenko’s Correction for Shear in Vibrating Beams
,”
J. Phys. D
,
8
(
16
), pp.
1927
1936
. 10.1088/0022-3727/8/16/003
30.
Chan
,
K. T.
,
Lai
,
K. F.
,
Stephen
,
N. G.
, and
Young
,
K.
,
2011
, “
A New Method to Determine the Shear Coefficient of Timoshenko Beam Theory
,”
J. Sound Vib.
,
330
(
14
), pp.
3488
3497
. 10.1016/j.jsv.2011.02.012
31.
Hutchinson
,
J. R.
,
2001
, “
Shear Coefficients for Timoshenko Beam Theory
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
87
92
. 10.1115/1.1349417
32.
Stephen
,
N. G.
, and
Levinson
,
M.
,
1979
, “
A Second Order Beam Theory
,”
J. Sound Vib.
,
67
(
3
), pp.
293
305
. 10.1016/0022-460X(79)90537-6
33.
Morales
,
A.
,
Flores
,
J.
, and
Gutiérrez
,
L.
,
2001
, “
Improved Eddy Currents Driver-detector for Elastic Vibrations
,”
Am. J. Phys.
,
69
(
4
), pp.
517
522
. 10.1119/1.1336834
34.
Morales
,
A.
,
Flores
,
J.
,
Gutiérrez
,
L.
, and
Méndez-Sánchez
,
R. A.
,
2002
, “
Compresional and Torsional Wave Amplitudes in Rods With Periodic Structures
,”
J. Acoust. Soc. Am.
,
112
(
5
), pp.
1961
1967
. 10.1121/1.1509431
35.
Daw
,
H. A.
, and
Liefeld
,
R. J.
,
1998
, “
Driven Singing Aluminum Rods
,”
Am. J. Phys.
,
66
(
7
), pp.
639
641
. 10.1119/1.18924
36.
Kwun
,
H.
, and
Teller
,
C. M.
,
1994
, “
Magnetostrictive Generation and Detection of Longitudinal, Torsional, and Flexural Waves in a Steel Rod
,”
J. Acoust. Soc. Am.
,
96
(
2
), pp.
1202
1204
. 10.1121/1.411391
37.
Simpson
,
H. M.
, and
Wolfe
,
P. J.
,
1975
, “
Young’s Modulus and Internal Damping in a Vibrating Rod
,”
Am. J. Phys.
,
43
(
6
), pp.
506
508
. 10.1119/1.9779
38.
Ibrahim
,
S. R.
, and
Mikulcik
,
E. C.
,
1973
, “
A Time Domain Modal Vibration Test Technique
,”
Shock Vib. Bull.
,
43
(
4
), pp.
21
37
. 10.1177/058310247400600615
39.
Juang
,
J. S.
, and
Pappa
,
R. S.
,
1985
, “
An Eigen System Realization Algorithm for Modal Parameter Identification and Model Reduction
,”
AIAA J. Guidance, Control Dyn.
,
8
(
5
), pp.
620
627
. 10.2514/3.20031
40.
Overschee
,
P. V.
, and
Moor
,
B. D.
,
1996
,
Subspace Identification for Linear Systems: Theory, Implementation, Applications
,
Kluwer Academic Publishers
,
Dordrecht
.
41.
Peeters
,
B.
,
Auweraer
,
H. V. D.
, and
Guillaume
,
P.
,
2004
, “
The Polymax Frequency Domain Method: A New Standard for Modal Parameter Estimation
,”
Shock Vib.
,
11
(
3,4
), pp.
395
409
. 10.1155/2004/523692
42.
Heylen
,
W.
,
Lammens
,
S.
, and
Sas
,
P.
,
1997
,
Modal Analysis Theory and Testing
,
KUL Press
,
Leuven
.
43.
Maia
,
N. M. M.
, and
Silva
,
J. M. M.
,
1997
,
Theoretical and Experimental Modal Analysis
,
Research Studies Press Ltd.
,
Taunton
.
44.
Ewins
,
D. J.
,
2000
,
Modal Testing: Theory, Practice and Application
, 2nd ed.,
Research Studies Press Ltd.
,
Hertfordshire
.
45.
Graff
,
K. F.
,
1991
,
Wave Motion in Elastic Solids
,
Dover
,
New York
.
46.
Levinson
,
M.
, and
Cooke
,
D. W.
,
1982
, “
On the Two Frequency Spectra of Timoshenko Beams
,”
J. Sound Vib.
,
84
(
3
), pp.
319
326
. 10.1016/0022-460X(82)90480-1
47.
Geist
,
B.
, and
McLaughlin
,
J. R.
,
1997
, “
Double Eigenvalues for the Uniform Timoshenko Beam
,”
Appl. Math. Lett.
,
10
(
3
), pp.
129
134
. 10.1016/S0893-9659(97)00048-7
48.
Franco-Villafañe
,
J. A.
,
Flores-Olmedo
,
E.
,
Báez
,
G.
, and
Méndez-Sánchez
,
R. A.
,
2014
, “
Evaluation of Young’s and Shear Moduli in Rods Using Acoustic Resonance Spectroscopy
,”
AIP Conf. Proc.
,
1579
(
1
), pp.
58
62
. 10.1063/1.4862418
49.
Torres-Guzmán
,
J. C.
,
de Anda
,
A. D.
,
Otero
,
J. A.
,
Morales
,
A.
,
Gutiérrez
,
L.
,
Monsivais
,
G.
, and
Flores
,
J.
,
2018
, “
On the Warping of the Extreme Ends of a Beam Under Flexural Oscillations
,”
J. Sound Vib.
,
435
, pp.
234
245
. 10.1016/j.jsv.2018.08.019
You do not currently have access to this content.