Abstract

In the context of this work, a violin string motion is examined using a finite element approach. The string is formulated via ideal string elements and is bowed at one point on the string; hence, there is a nodal contact between the bow and the string. The bow movement induces the stick-slip effect, which is the cause for the violin string sound. The present paper aims at the investigation of the stick-slip phenomenon of bowed strings, considering well-known bowed string effects like the Helmholtz corner modulation, the Schelleng ripples, and the flattening effect. One key element that is used in this work is the Schelleng diagram, which indicates the “perfect” bow force depending on the bowing position. Within these parameters, the Helmholtz motion is carried out. Additionally, different friction characteristic curves are applied in order to study the impact of the rosin on the string motion.

References

1.
Helmholtz
,
H. v.
,
1863
,
Von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik
,
Vieweg
,
Braunschweig, Germany
.
2.
Woodhouse
,
J.
, and
Galluzzo
,
P. M.
,
2004
, “
The Bowed String As We Know It Today
,”
Acta Acust. Unit. Acust.
,
90
(
4
), pp.
579
589
.
3.
Gough
,
C. E.
,
2015
, “
A Violin Shell Model: Vibrational Modes and Acoustics
,”
J. Acoust. Soc. Am.
,
137
(
3
), pp.
1210
1225
. 10.1121/1.4913458
4.
Marshall
,
K. D.
,
1985
, “
Modal Analysis of a Violin
,”
J. Acoust. Soc. Am.
,
77
(
2
), pp.
695
709
. 10.1121/1.392338
5.
Hutchins
,
C. M.
,
1983
, “
A History of Violin Research
,”
J. Acoust, Soc. Am.
,
73
(
5
), pp.
1421
1440
. 10.1121/1.389430
6.
McIntyre
,
M. E.
, and
Woodhouse
,
J.
,
1978
, “
The Acoustics of Stringed Musical Instruments
,”
Interdisciplinary Sci. Rev.
,
3
(
2
), pp.
157
173
. 10.1179/030801878791926128
7.
Gough
,
C.
,
2000
, “
Science and the Stradivarius
,”
Phys. World
,
13
(
4
), pp.
27
33
. 10.1088/2058-7058/13/4/23
8.
Woodhouse
,
J.
,
2014
, “
The Acoustics of the Violin: a Review
,”
Rep. Prog. Phys.
,
77
(
11
), pp.
1
42
. 10.1088/0034-4885/77/11/115901
9.
Raman
,
C. V.
,
1918
, “
On the Mechanical Theory of the Vibrations of Bowed Strings
,”
Bull. Indian Assoc. Cultivation Sci.
,
15
, pp.
1
158
.
10.
Carrier
,
G. F.
,
1945
, “
On the Non-linear Vibration Problem of the Elastic String
,”
Q. Appl. Math.
,
3
(
2
), pp.
157
165
. 10.1090/qam/12351
11.
Friedlander
,
F. G.
,
1953
, “
On the Oscillations of a Bowed String
,”
Math. Proc. Cambridge Philos. Soc.
,
49
(
3
), pp.
516
530
. 10.1017/S0305004100028681
12.
Keller
,
J. B.
,
1953
, “
Bowing of Violin Strings
,”
Commun. Pure Appl. Math.
,
6
(
4
), pp.
483
495
. 10.1002/cpa.3160060404
13.
Lawergren
,
B.
,
1980
, “
On the Motion of Bowed Violin Strings
,”
Acta Acust. Unit. Acust.
,
44
(
3
), pp.
194
206
.
14.
Lawergren
,
B.
,
1983
, “
Harmonics of S Motion on Bowed Strings
,”
J. Acoust. Soc. Am.
,
73
(
6
), pp.
2174
2179
. 10.1121/1.389541
15.
Cremer
,
L.
,
1984
,
The Physics of the Violin
,
The MIT Press
,
Cambridge, MA, London, England
.
16.
Schelleng
,
J. C.
,
1973
, “
The Bowed String and the Player
,”
J. Acoust. Soc. Am.
,
53
(
26
), pp.
26
41
. 10.1121/1.1913322
17.
Schelleng
,
J. C.
,
1974
, “
The Physics of the Bowed String
,”
Sci. Am.
,
230
(
1
), pp.
87
95
. 10.1038/scientificamerican0174-87
18.
Guettler
,
K.
,
2002
, “
On the Creation of the Helmholtz Motion in Bowed Strings
,”
Acta Acust. United Acust.
,
88
(
6
), pp.
970
985
.
19.
Woodhouse
,
J.
,
Schumacher
,
R. T.
, and
Garoff
,
S.
,
2000
, “
Reconstruction of Bowing Point Friction Force in a Bowed String
,”
J. Acoust. Soc. Am.
,
108
(
1
), pp.
357
368
. 10.1121/1.429529
20.
Pitteroff
,
R.
, and
Woodhouse
,
J.
,
1998
, “
Mechanics of the Contact Area Between a Violin Bow and a String. Part I: Reflection and Transmission Behaviour
,”
Acta Acust. United Acust.
,
84
(
3
), pp.
543
562
.
21.
Pitteroff
,
R.
, and
Woodhouse
,
J.
,
1998
, “
Mechanics of the Contact Area Between a Violin Bow and a String. Part II: Simulating the Bowed String
,”
Acta Acust. United Acust.
,
84
(
4
), pp.
744
757
.
22.
Pitteroff
,
R.
, and
Woodhouse
,
J.
,
1998
, “
Mechanics of the Contact Area Between a Violin Bow and a String. Part III: Parameter Dependence
,”
Acta Acust. United Acust.
,
84
(
5
), pp.
929
946
.
23.
Smith
,
J. H.
, and
Woodhouse
,
J.
,
2000
, “
The Tribology of Rosin
,”
J. Mech. Phys. Solids.
,
48
(
8
), pp.
1633
1681
. 10.1016/S0022-5096(99)00067-8
24.
McIntyre
,
M. E.
, and
Woodhouse
,
J.
,
1981
, “
Aperiodicity in Bowed-String Motion
,”
Acta Acust. United Acust.
,
49
(
1
), pp.
13
32
.
25.
Weinreich
,
G.
, and
Causse
,
R.
,
1991
, “
Elementary Stability Considerations for Bowed-String Motion
,”
J. Acoust. Soc. Am.
,
89
(
2
), pp.
887
895
. 10.1121/1.1894650
26.
Woodhouse
,
J.
,
1994
, “
On the Stability of Bowed String Motion
,”
Acta Acust. United Acust
,
80
(
1
), pp.
58
72
.
27.
Cremer
,
L.
, and
Lazarus
,
H.
,
1968
, “
Der Einfluß des Bogendruckes beim Anstreichen einer Saite
,"
Proceedings of the 6th International Congress on Acoustics
,
Tokyo, Japan
,
Aug. 21–28
,
Maruzen Company Ltd., Tokyo, Japan and Elsevier Publishing Company
,
Amsterdam, The Netherlands
.
28.
Cremer
,
L.
,
1974
, “
Influence of Bow Pressure on Self-excited Vibrations of Stringed Instruments
,”
Acta Acust. United Acust.
,
30
(
3
), pp.
119
136
.
29.
Cremer
,
L.
,
1979
, “
Das Schicksal der ’Sekundärwellen’ bei der Selbsterregung von Streichinstrumenten
,”
Acta Acust. United Acust.
,
42
(
3
), pp.
133
148
.
30.
McIntyre
,
M. E.
, and
Woodhouse
,
J.
,
1979
, “
On the Fundamentals of Bowed-String Dynamics
,”
Acta Acust. United Acust.
,
43
(
2
), pp.
93
108
.
31.
McIntyre
,
M. E.
,
Schumacher
,
R. T.
, and
Woodhouse
,
J.
,
1983
, “
On the Oscillations of Musical Instruments
,”
J. Acoust. Soc. Am.
,
74
(
5
), pp.
1325
1345
. 10.1121/1.390157
32.
Smith
,
J. O.
,
1992
, “
Physical Modeling Using Digital Waveguides
,”
Computer Music J.
,
16
(
4
), pp.
74
98
. 10.2307/3680470
33.
Mansour
,
H.
,
Woodhouse
,
J.
, and
Scavone
,
G. P.
,
2016
, “
Enhanced Wave-based Modelling of Musical Strings. Part 2: Bowed Strings
,”
Acta Acust. United Acust.
,
102
(
6
), pp.
1082
1093
. 10.3813/AAA.919021
34.
Bilbao
,
S.
,
2009
,
Numerical Sound Synthesis
,
John Wiley and Sons Ltd
,
Chichester, UK
.
35.
Desvages
,
C.
, and
Bilbao
,
S.
,
2016
, “
Two-Polarisation Physical Model of Bowed Strings With Nonlinear Contact and Friction Forces, and Application to Gesture-Based Sound Synthesis
,”
Appl. Sci.
,
135
(
6
), pp.
1
32
. 10.3390/app6050135
36.
Desvages
,
C.
,
2018
, “
Physical Modelling of the Bowed String and Applications to Sound Synthesis
,” doctoral thesis,
University of Edinburgh
,
Edinburgh, UK
.
37.
Demoucron
,
M.
,
2008
, “
On the Control of Virtual Violins - Physical Modelling and Control of Bowed String Instruments
,” doctoral thesis,
Royal Institute of Technology
,
Stockholm, Sweden
.
38.
Chabassier
,
J.
,
Durufle
,
M.
, and
Joly
,
P.
,
2013
, “
Time Domain Simulation of a Piano. Part 1: Model Description
,”
Math. Model. Numer. Anal. (ESAIM: M2AN)
,
48
(
5
), pp.
1241
1278
. 10.1051/m2an/2013136
39.
Chabassier
,
J.
,
Durufle
,
M.
, and
Joly
,
P.
,
2016
, “
Time Domain Simulation of a Piano. Part 2: Numerical Aspects
,”
Math. Model. Numer. Anal. (ESAIM: M2AN)
,
50
(
1
), pp.
93
133
. 10.1051/m2an/2015007
40.
Gough
,
C. E.
,
2015
, “
Violin Plate Modes
,”
J. Acoust. Soc. Am.
,
137
(
1
), pp.
139
153
. 10.1121/1.4904544
41.
Bennett
Jr,
W. R.
,
2018
, The Science of Musical Sound - Volume 1: Stringed Instruments, Pipe Organs, and the Human Voice,
Springer Nature Switzerland AG
,
Cham, Switzerland
.
42.
Rossing
,
T. D.
,
2010
, “Plucked Strings,”
The Science of String Instruments
.
T. D.
Rossing
, ed.,
Springer
,
New York, NY
, pp.
11
18
.
43.
Guettler
,
K.
,
2010
, “Bows, Strings, and Bowing,”
The Science of String Instruments
.
T. D.
Rossing
, ed.,
Springer
,
New York, NY
, pp.
279
299
.
44.
Rossing
,
T. D.
, and
Hanson
,
R. J.
,
2010
, “Bowed Strings,”
The Science of String Instruments
.
T. D.
Rossing
, ed.,
Springer
,
New York, NY
, pp.
197
208
.
45.
Guettler
,
K.
,
1994
, “
Wave Analysis of a String Bowed to Anomalous Low Frequencies
,”
Catgut Acoust. Soc. J.
,
2
(
6
), pp.
8
14
.
46.
Schoonderwaldt
,
E.
,
2009
, “
Mechanics and Acoustics of Violin Bowing
,” doctoral thesis,
Royal Institute of Technology
,
Stockholm, Sweden
.
47.
Boutillon
,
X.
,
1991
, “
Analytical Investigation of the Flattening Effect
,”
J. Acoust. Soc. Am.
,
90
(
2
), pp.
754
763
. 10.1121/1.401945
48.
Pierce
,
A. D.
,
2007
, “Basic Linear Acoustics,”
Springer Handbook of Acoustics
.
T. D.
Rossing
, ed.,
Springer
,
New York, NY
, pp.
25
111
.
49.
Bathe
,
K. J.
,
2006
,
Finite Element Procedures
,
Prentice Hall, Pearson Education, Inc.
,
Watertown, MA
.
50.
Hughes
,
T. J.
,
2000
,
The Finite Element Method
,
Dover Publications
,
New York, NY
.
51.
Giannokopoulos
,
A. E.
,
1989
, “
The Return Mapping Method for the Integration of Friction Constitutive Relations
,”
Comput. Struct.
,
32
(
1
), pp.
157
167
. 10.1016/0045-7949(89)90081-3
52.
Willner
,
K.
,
2003
,
Kontinuums- Und Kontaktmechanik
,
Springer
,
Berlin, Heidelberg, Germany
.
53.
Galluzzo
,
P. M.
,
Woodhouse
,
J.
, and
Mansour
,
H.
,
2017
, “
Assessing Friction Laws for Simulating Bowed-String Motion
,”
Acta Acust. United Acust.
,
103
(
6
), pp.
1080
1099
. 10.3813/AAA.919136
54.
Lazarus
,
H.
,
1972
, “
Die Behandlung Der Selbsterregten Kippschwingungen Der Gestrichenen Saite Mit Hilfe Der Endlichen Laplacetransformation
,” doctoral thesis,
Technical University of Berlin
,
Berlin, Germany
.
55.
Jansson
,
E.
,
2002
,
Acoustics for Violin and Guitar Makers
, 4th ed.,
Royal Institute of Technology, Department of Speech, Music and Hearing
,
Stockholm, Sweden
.
56.
Guettler
,
K.
, and
Askenfelt
,
A.
,
1997
, “
Acceptance Limits for the Duration of Pre-Helmholtz Transients
,”
J. Acoust. Soc. Am.
,
101
(
5
), pp.
2903
2913
. 10.1121/1.418520
57.
Woodhouse
,
J.
,
2003
, “
Bowed String Simulation Using a Thermal Friction Model
,”
Acta Acust. United Acust.
,
89
(
2
), pp.
355
368
.
You do not currently have access to this content.