Abstract

The multi-degrees-of-freedom (MDOF) tuned mass damper (TMD) has proven its ability to suppress multiple modes of interest, and it possesses less mounting space than multiple single degree-of-freedom TMDs of equal damping mass. However, it is challenging to implement the exact design of MDOF TMDs having expected vibration modes. The conceptual design of MDOF TMD containing visualized DOFs is first presented by the graphical approach, and the visualization of the quantitative relationship between the freedoms and constraints of TMD is attained. Then, dynamics modeling is analytically formulated by incorporating experimental data, and optimization of MDOF TMD considering background modes is performed. Two scenarios of MDOF TMD (i.e., 2DOFs TMD and 3DOFs TMD) are simulated. Vibration suppression of single dominant mode and multiple modes are achieved, corresponding to the case when the primary structure is subjected to wide and narrow band harmonic excitations, respectively. Afterward, a TMD with one rotational and two translational (1R2 T) DOFs is designed by embodying the geometric constraint patterns by flexible beams, and changeable elastic elements are incorporated. Experiments show that the first, second, and third bending modes of the cantilever beam are suppressed by 80.0%, 67.5%, and 61.2%, respectively, by the 3DOFs TMD for multiple modes suppression.

References

References
1.
Sims
,
N. D.
,
2007
, “
Vibration Absorbers for Chatter Suppression: A New Analytical Tuning Methodology
,”
J. Sound Vib.
,
301
(
3–5
), pp.
592
607
. 10.1016/j.jsv.2006.10.020
2.
Duncan
,
G. S.
,
Tummond
,
M. F.
, and
Schmitz
,
T. L.
,
2005
, “
An Investigation of the Dynamic Absorber Effect in High-Speed Machining
,”
Int. J. Mach. Tools Manuf.
,
45
(
4–5
), pp.
497
507
. 10.1016/j.ijmachtools.2004.09.005
3.
Yang
,
Y.
,
Muñoa
,
J.
, and
Altintas
,
Y.
,
2010
, “
Optimization of Multiple Tuned Mass Dampers to Suppress Machine Tool Chatter
,”
Int. J. Mach. Tools Manuf.
,
50
(
9
), pp.
834
842
. 10.1016/j.ijmachtools.2010.04.011
4.
Kolluru
,
K.
,
Axinte
,
D.
, and
Becker
,
A.
,
2013
, “
A Solution for Minimising Vibrations in Milling of Thin Walled Casings by Applying Dampers to Workpiece Surface
,”
CIRP Ann.
,
62
(
1
), pp.
415
418
. 10.1016/j.cirp.2013.03.136
5.
Barredo
,
E.
,
Mendoza Larios
,
J. G.
,
Mayén
,
J.
,
Flores-Hernández
,
A. A.
,
Colín
,
J.
, and
Arias Montiel
,
M.
,
2019
, “
Optimal Design for High-Performance Passive Dynamic Vibration Absorbers Under Random Vibration
,”
Eng. Struct.
,
195
, pp.
469
489
. 10.1016/j.engstruct.2019.05.105
6.
Ma
,
W.
,
Yang
,
Y.
, and
Yu
,
J.
,
2019
, “
General Routine of Suppressing Single Vibration Mode by Multi-DOF Tuned Mass Damper: Application of Three-DOF
,”
Mech. Syst. Signal Process.
,
121
, pp.
77
96
. 10.1016/j.ymssp.2018.11.010
7.
Blanding
,
D. L.
,
1999
,
Exact Constraint: Machine Design Using Kinematic Principles
,
American Society of Mechanical Engineers
,
New York, NY
.
8.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts via Freedom and Constraint Topology (FACT)—Part I: Principles
,”
Precis. Eng.
,
34
(
2
), pp.
259
270
. 10.1016/j.precisioneng.2009.06.008
9.
Su
,
H. J.
,
Dorozhkin
,
D. V.
, and
Vance
,
J. M.
,
2009
, “
A Screw Theory Approach for the Conceptual Design of Flexible Joints for Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041009
. 10.1115/1.3211024
10.
Yu
,
J.
,
Li
,
S.
,
Su
,
H. J.
, and
Culpepper
,
M. L.
,
2011
, “
Screw Theory Based Methodology for the Deterministic Type Synthesis of Flexure Mechanisms
,”
ASME J. Mech. Rob.
,
3
(
3
), p.
031008
. 10.1115/1.4004123
11.
Zuo
,
H.
,
Bi
,
K.
, and
Hao
,
H.
,
2017
, “
Using Multiple Tuned Mass Dampers to Control Offshore Wind Turbine Vibrations Under Multiple Hazards
,”
Eng. Struct.
,
141
, pp.
303
315
. 10.1016/j.engstruct.2017.03.006
12.
Elias
,
S.
,
Matsagar
,
V.
, and
Datta
,
T. K.
,
2016
, “
Effectiveness of Distributed Tuned Mass Dampers for Multi-Mode Control of Chimney Under Earthquakes
,”
Eng. Struct.
,
124
, pp.
1
16
. 10.1016/j.engstruct.2016.06.006
13.
Jang
,
S. J.
,
Brennan
,
M. J.
,
Rustighi
,
E.
, and
Jung
,
H. J.
,
2012
, “
A Simple Method for Choosing the Parameters of a Two Degree-of-Freedom Tuned Vibration Absorber
,”
J. Sound Vib.
,
331
(
21
), pp.
4658
4667
. 10.1016/j.jsv.2012.05.020
14.
Zuo
,
L.
,
2004
, “
Element and System Design for Active and Passive Vibration Isolation
,”
Ph.D. dissertation
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
15.
Zuo
,
L.
, and
Nayfeh
,
S. A.
,
2006
, “
The Two-Degree-of-Freedom Tuned-Mass Damper for Suppression of Single-Mode Vibration Under Random and Harmonic Excitation
,”
ASME J. Vib. Acoust.
,
128
(
1
), pp.
56
65
.
16.
Yang
,
Y.
,
Dai
,
W.
, and
Liu
,
Q.
,
2015
, “
Design and Implementation of Two-Degree-of-Freedom Tuned Mass Damper in Milling Vibration Mitigation
,”
J. Sound Vib.
,
335
, pp.
78
88
. 10.1016/j.jsv.2014.09.032
17.
Zuo
,
L.
, and
Nayfeh
,
S. A.
,
2004
, “
Minimax Optimization of Multi-Degree-of-Freedom Tuned-Mass Dampers
,”
J. Sound Vib.
,
272
(
3–5
), pp.
893
908
. 10.1016/S0022-460X(03)00500-5
18.
Yang
,
Y.
,
Dai
,
W.
, and
Liu
,
Q.
,
2017
, “
Design and Machining Application of a 2DOFs Magnetic Tuned Mass Damper
,”
Int. J. Adv. Manuf. Technol.
,
89
(
5–8
), pp.
1635
1643
. 10.1007/s00170-016-9176-1
19.
Mokrani
,
B.
,
Tian
,
Z.
,
Alaluf
,
D.
,
Meng
,
F.
, and
Preumont
,
A.
,
2017
, “
Passive Damping of Suspension Bridges Using Multi-Degree of Freedom Tuned Mass Dampers
,”
Eng. Struct.
,
153
, pp.
749
756
. 10.1016/j.engstruct.2017.10.028
20.
Sun
,
C.
, and
Jahangiri
,
V.
,
2018
, “
Bi-Directional Vibration Control of Offshore Wind Turbines Using a 3D Pendulum Tuned Mass Damper
,”
Mech. Syst. Signal Process.
,
105
, pp.
338
360
. 10.1016/j.ymssp.2017.12.011
21.
Esmailzadeh
,
E.
, and
Jalili
,
N.
,
1998
, “
Optimum Design of Vibration Absorbers for Structurally Damped Timoshenko Beams
,”
ASME J. Vib. Acoust.
,
120
(
4
), pp.
833
841
.
22.
Chen
,
Y. H.
, and
Huang
,
Y. H.
,
2004
, “
Timoshenko Beam With Tuned Mass Dampers and Its Design Curves
,”
J. Sound Vib.
,
278
(
4–5
), pp.
873
888
. 10.1016/j.jsv.2003.10.013
23.
Yang
,
F.
,
Sedaghati
,
R.
, and
Esmailzadeh
,
E.
,
2009
, “
Optimal Vibration Suppression of Timoshenko Beam With Tuned-Mass-Damper Using Finite Element Method
,”
ASME J. Vib. Acoust.
,
131
(
3
), p.
031006
. 10.1115/1.3085890
24.
Caughey
,
T. K.
,
1960
, “
Classical Normal Modes in Damped Linear Dynamic Systems
,”
ASME J. Appl. Mech.
,
27
(
2
), pp.
269
271
. 10.1115/1.3643949
25.
Mottershead
,
J. E.
,
Friswell
,
M. I.
,
Ng
,
G. H. T.
, and
Brandon
,
J. A.
,
1996
, “
Geometric Parameters for Finite Element Model Updating of Joints and Constraints
,”
Mech. Syst. Signal Process.
,
10
(
2
), pp.
171
182
. 10.1006/mssp.1996.0012
26.
Rashid
,
A.
, and
Nicolescu
,
C. M.
,
2008
, “
Design and Implementation of Tuned Viscoelastic Dampers for Vibration Control in Milling
,”
Int. J. Mach. Tools Manuf.
,
48
(
9
), pp.
1036
1053
. 10.1016/j.ijmachtools.2007.12.013
27.
Siami
,
A.
,
Karimi
,
H. R.
,
Cigada
,
A.
,
Zappa
,
E.
, and
Sabbioni
,
E.
,
2018
, “
Parameter Optimization of an Inerter-Based Isolator for Passive Vibration Control of Michelangelo’s Rondanini Pietà
,”
Mech. Syst. Signal Process.
,
98
, pp.
667
683
. 10.1016/j.ymssp.2017.05.030
28.
Kirkpatrick
,
S.
,
Gelatt
,
C. D.
, and
Vecchi
,
M. P.
,
1983
, “
Optimization by Simulated Annealing
,”
Science
,
220
(
4598
), pp.
671
680
. 10.1126/science.220.4598.671
29.
Ohsaki
,
M.
,
Tsuda
,
S.
, and
Hasegawa
,
T.
,
2016
, “
Parameter Optimization of Tetrahedral Tuned Mass Damper for Three-Directional Seismic Response Reduction
,”
Eng. Struct.
,
126
, pp.
667
674
. 10.1016/j.engstruct.2016.08.014
30.
Aida
,
T.
,
Aso
,
T.
,
Nakamoto
,
K.
, and
Kawazoe
,
K.
,
1998
, “
Vibration Control of Shallow Shell Structures Using a Shell-Type Dynamic Vibration Absorber
,”
J. Sound Vib.
,
218
(
2
), pp.
245
267
. 10.1006/jsvi.1998.1829
You do not currently have access to this content.