Abstract

In this work, buckling and vibration characteristics of two-dimensional functionally graded (FG) nanobeam of nonuniform thickness subjected to in-plane and thermal loads have been analyzed within the frame work of Timoshenko beam theory. The beam is tapered by linear variation in thickness along the length. The temperature-dependent material properties of the beam are varying along thickness and length as per a power-law distribution and exponential function, respectively. The analysis has been presented using Eringen’s nonlocal theory to incorporate the size effect. Hamilton’s energy principle has been used to formulate the governing equations of motion. These resulting equations have been solved via generalized differential quadrature method (GDQM) for three combinations of clamped and simply supported boundary conditions. The effect of in-plane load together with temperature variation, nonuniformity parameter, gradient indices, nonlocal parameter, and slenderness ratio on the natural frequencies is illustrated for the first three modes of vibration. The critical buckling loads in compression have been computed by putting the frequencies equal to zero. A significant contribution of in-plane load on mechanical behavior of two-directional functionally graded nanobeam with nonuniform cross section has been noticed. Results are in good accordance.

References

References
1.
Lee
,
Z.
,
Ophus
,
C.
,
Fischer
,
L. M.
,
Evoy
,
S.
,
Dahmen
,
U.
, and
Mitlin
,
D.
,
2009
, “
Metallic NEMS Components Fabricated From Nanocomposite Al-Mo Films
,”
Nanotechnology
,
17
(
12
), pp.
3063
3070
. 10.1088/0957-4484/17/12/042
2.
Witvrouw
,
A.
, and
Mehta
,
A.
,
2005
, “
The Use of Functionally Graded Poly-SiGe Layers for MEMS Applications
,”
Mater. Sci. Forum
,
492–493
, pp.
255
260
. 10.4028/www.scientific.net/MSF.492-493.255
3.
Eringen
,
A. C.
, and
Edelen
,
D. G. B.
,
1972
, “
On Nonlocal Elasticity
,”
Int. J. Eng. Sci.
,
10
(
3
), pp.
233
248
. 10.1016/0020-7225(72)90039-0
4.
Ebrahimi
,
F.
, and
Barati
,
M. R.
,
2018
, “
A Modified Nonlocal Couple Stress-Based Beam Model for Vibration Analysis of Higher-Order FG Nanobeams
,”
Mech. Adv. Mater. Struct.
,
25
(
13
), pp.
1121
1132
. 10.1080/15376494.2017.1365979
5.
Akg
,
O. B.
,
2017
, “
Effects of Thermal and Shear Deformation on Vibration Response of Functionally Graded Thick Composite Microbeams
,”
Compos. Part B: Eng.
,
129
, pp.
77
87
. 10.1016/j.compositesb.2017.07.024
6.
Nematollahi
,
M. S.
,
Mohammadi
,
H.
, and
Nematollahi
,
M. A.
,
2017
, “
Thermal Vibration Analysis of Nanoplates Based on the Higher-Order Nonlocal Strain Gradient Theory by an Analytical Approach
,”
Superlattices Microstruct.
,
111
, pp.
944
959
. 10.1016/j.spmi.2017.07.055
7.
Ansari
,
R.
,
Gholami
,
R.
, and
Ajori
,
S.
,
2013
, “
Torsional Vibration Analysis of Carbon Nanotubes Based on the Strain Gradient Theory and Molecular Dynamic Simulations
,”
ASME J. Vib. Acoust.
,
135
(
5
), p.
051016
. https://doi.org/10.1115/1.4024208
8.
Cana
,
M.
,
Barretta
,
R.
, and
De Sciarra
,
F. M.
,
2016
, “
A Gradient Elasticity Model of Bernoulli Euler Nanobeams in Non-Isothermal Environments
,”
Eur. J. Mech. A/Solids
,
55
, pp.
243
255
. 10.1016/j.euromechsol.2015.09.008
9.
Akgöz
,
B.
, and
Civalek
,
Ö
,
2015
, “
A Novel Microstructure-Dependent Shear Deformable Beam Model
,”
Int. J. Mech. Sci.
,
99
, pp.
10
20
. 10.1016/j.ijmecsci.2015.05.003
10.
Zenkour
,
A. M.
,
2018
, “
Nonlocal Elasticity and Shear Deformation Effects on Thermal Buckling of a CNT Embedded in a Viscoelastic Medium
,”
Eur. Phys. J. Plus
,
133
(
5
), pp.
1
14
. 10.1140/epjp/i2018-12014-2
11.
Ebrahimi
,
F.
,
Dehghan
,
M.
, and
Seyfi
,
A.
,
2019
, “
Eringen’s Nonlocal Elasticity Theory for Wave Propagation Analysis of Magneto-Electro-Elastic Nanotubes
,”
Adv. Nano Res.
,
7
(
1
), pp.
1
11
.
12.
Civalek
,
Ö
, and
Demir
,
C.
,
2016
, “
A Simple Mathematical Model of Microtubules Surrounded by an Elastic Matrix by Nonlocal Finite Element Method
,”
Appl. Math. Comput.
,
289
, pp.
335
352
. 10.1016/j.amc.2016.05.034
13.
Ebrahimi
,
F.
, and
Salari
,
E.
,
2016
, “
Effect of Various Thermal Loadings on Buckling and Vibrational Characteristics of Nonlocal Temperature-Dependent Functionally Graded Nanobeams
,”
Mech. Adv. Mater. Struct.
,
23
(
12
), pp.
1379
1397
. 10.1080/15376494.2015.1091524
14.
Azimi
,
M.
,
Mirjavadi
,
S. S.
,
Shafiei
,
N.
, and
Hamouda
,
A. M. S.
,
2018
, “
Vibration of Rotating Functionally Graded Timoshenko Nano-Beams With Nonlinear Thermal Distribution
,”
Mech. Adv. Mater. Struc.
,
25
(
6
), pp.
467
480
. 10.1080/15376494.2017.1285455
15.
Ebrahimi
,
F.
, and
Barati
,
M. R.
,
2018
, “
Vibration Analysis of Smart Piezoelectrically Actuated Nanobeams Subjected to Magneto-Electrical Field in Thermal Environment
,”
J. Vib. Control
,
24
(
3
), pp.
549
564
. 10.1177/1077546316646239
16.
Eringen
,
A. C.
,
1983
, “
On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves
,”
J. Appl. Phys.
,
54
(
9
), pp.
4703
4710
. 10.1063/1.332803
17.
Ebrahimi
,
F.
, and
Dabbagh
,
A.
,
2108
, “
NSGT-Based Acoustical Wave Dispersion Characteristics of Thermo-Magnetically Actuated Double-Nanobeam Systems
,”
Struct. Eng. Mech.
,
68
(
6
), pp.
701
711
.
18.
Akgöz
,
B.
, and
Civalek
,
Ö
,
2013
, “
Buckling Analysis of Functionally Graded Microbeams Based on the Strain Gradient Theory
,”
Acta Mech.
,
224
(
9
), pp.
2185
2201
. 10.1007/s00707-013-0883-5
19.
Ebrahimi
,
F.
, and
Barati
,
M. R.
,
2018
, “
Wave Propagation Analysis of Smart Strain Gradient Piezo-Magneto-Elastic Nonlocal Beams
,”
Struct. Eng. Mech.
,
66
(
2
), pp.
237
248
.
20.
Challamel
,
N.
, and
Wang
,
C. M.
,
2008
, “
The Small Length Scale Effect for a Non-Local Cantilever Beam: A Paradox Solved
,”
Nanotechnology
,
19
(
34
), p.
345703
. 10.1088/0957-4484/19/34/345703
21.
Norouzzadeh
,
A.
, and
Ansari
,
R.
,
2017
, “
Finite Element Analysis of Nano-Scale Timoshenko Beams Using the Integral Model of Nonlocal Elasticity
,”
Phys. E: Low-dimensional Syst. Nanostruct.
,
88
, pp.
194
200
. 10.1016/j.physe.2017.01.006
22.
Khodabakhshi
,
P.
, and
Reddy
,
J. N.
,
2015
, “
A Unified Integro-Differential Nonlocal Model
,”
Int. J. Eng. Sci.
,
95
, pp.
60
75
. 10.1016/j.ijengsci.2015.06.006
23.
Ebrahimi
,
F.
, and
Barati
,
M. R.
,
2017
, “
Small-scale Effects on Hygro-Thermo-Mechanical Vibration of Temperature-Dependent Nonhomogeneous Nanoscale Beams
,”
Mech. Adv. Mater. Struct.
,
24
(
11
), pp.
924
936
. 10.1080/15376494.2016.1196795
24.
Hosseini
,
S. A. H. A. H.
, and
Rahmani
,
O.
,
2017
, “
Dynamic Characteristics of Temperature-Dependent Viscoelastic FG Nanobeams Subjected to 2D-Magnetic Field Under Periodic Loading
,”
J. Therm. Stress.
,
25
, pp.
467
480
.
25.
Farajpour
,
A.
,
Dehghany
,
M.
, and
Shahidi
,
A. R.
,
2013
, “
Surface and Nonlocal Effects on the Axisymmetric Buckling of Circular Graphene Sheets in Thermal Environment
,”
Compos. Part B: Eng.
,
50
, pp.
333
343
. 10.1016/j.compositesb.2013.02.026
26.
Ebrahimi
,
F.
, and
Barati
,
M. R.
,
2017
, “
Through-the-Length Temperature Distribution Effects on Thermal Vibration Analysis of Nonlocal Strain-Gradient Axially Graded Nanobeams Subjected to Nonuniform Magnetic Field
,”
J. Therm. Stress.
,
40
(
5
), pp.
548
563
. 10.1080/01495739.2016.1254076
27.
Ebrahimi
,
F.
,
Barati
,
M. R.
, and
Haghi
,
P.
,
2017
, “
Thermal Effects on Wave Propagation Characteristics of Rotating Strain Gradient Temperature-Dependent Functionally Graded Nanoscale Beams
,”
J. Therm. Stress.
,
40
(
5
), pp.
535
547
. 10.1080/01495739.2016.1230483
28.
Ansari
,
R.
, and
Norouzzadeh
,
A.
,
2016
, “
Nonlocal and Surface Effects on the Buckling Behavior of Functionally Graded Nanoplates: An Isogeometric Analysis
,”
Phys.E: Low-dimensional Syst. Nanostruct.
,
84
, pp.
84
97
. 10.1016/j.physe.2016.05.036
29.
Rajasekaran
,
S.
, and
Bakhshi
,
H. B.
,
2017
, “
Bending, Buckling and Vibration of Small-Scale Tapered Beams
,”
Int. J. Eng. Sci.
,
120
, pp.
172
188
. 10.1016/j.ijengsci.2017.08.005
30.
Khaniki
,
H. B.
,
Hosseini-hashemi
,
S.
, and
Nezamabadi
,
A.
,
2017
, “
Buckling Analysis of Nonuniform Nonlocal Strain Gradient Beams Using Generalized Differential Quadrature Method
,”
Alexandria Eng. J.
,
57
(
3
), pp.
1361
1368
. 10.1016/j.aej.2017.06.001
31.
Shafiei
,
N.
,
Ghadiri
,
M.
, and
Mahinzare
,
M.
,
2019
, “
Flapwise Bending Vibration Analysis of Rotary Tapered Functionally Graded Nanobeam in Thermal Environment
,”
Mech. Adv. Mater. Struc.
,
26
(
2
), pp.
139
155
. 10.1080/15376494.2017.1365982
32.
Lal
,
R.
, and
Dangi
,
C.
,
2019
, “
Thermal Vibrations of Temperature-Dependent Functionally Graded Non-Uniform Timoshenko Nanobeam Using Nonlocal Elasticity Theory
,”
Mater. Res. Express
,
6
(
7
). 10.1088/2053-1591/ab1332
33.
Shen
,
Z.-B.
,
Li
,
D.-K.
,
Li
,
D.
, and
Tang
,
G.-J.
,
2012
, “
Frequency Shift of a Nanomechanical Sensor Carrying a Nanoparticle Using Nonlocal Timoshenko Beam Theory
,”
J. Mech. Sci. Technol.
,
26
(
5
), pp.
1577
1583
. 10.1007/s12206-012-0338-2
34.
Hosseini
,
M.
,
Mofidi
,
M. R.
,
Jamalpoor
,
A.
, and
Safi Jahanshahi
,
M.
,
2018
, “
Nanoscale Mass Nanosensor Based on the Vibration Analysis of Embedded Magneto-Electro-Elastic Nanoplate Made of FGMs via Nonlocal Mindlin Plate Theory
,”
Microsyst. Technol.
,
24
(
5
), pp.
2295
3316
. 10.1007/s00542-017-3654-8
35.
Yang
,
T.
,
Tang
,
Y.
,
Li
,
Q.
, and
Yang
,
X.-D.
,
2018
, “
Nonlinear Bending, Buckling and Vibration of Bi-Directional Functionally Graded Nanobeams
,”
Compos. Struct.
,
204
, pp.
313
319
. 10.1016/j.compstruct.2018.07.045
36.
Nejad
,
M. Z.
, and
Hadi
,
A.
,
2016
, “
Non-Local Analysis of Free Vibration of Bi-Directional Functionally Graded Euler-Bernoulli Nano-Beams
,”
Int. J. Eng. Sci.
,
105
, pp.
1
11
. 10.1016/j.ijengsci.2016.04.011
37.
Nejad
,
M. Z.
,
Hadi
,
A.
, and
Rastgoo
,
A.
,
2016
, “
Buckling Analysis of Arbitrary Two-Directional Functionally Graded Euler-Bernoulli Nano-Beams Based on Nonlocal Elasticity Theory
,”
Int. J. Eng. Sci.
,
103
, pp.
1
10
. 10.1016/j.ijengsci.2016.03.001
38.
Nejad
,
M. Z.
, and
Hadi
,
A.
,
2016
, “
Eringen’s Non-Local Elasticity Theory for Bending Analysis of Bi-Directional Functionally Graded Euler-Bernoulli Nano-Beams
,”
Int. J. Eng. Sci.
,
106
, pp.
1
9
. 10.1016/j.ijengsci.2016.05.005
39.
Mirjavadi
,
S. S.
,
Afshari
,
B. M.
,
Shafiei
,
N.
,
Hamouda
,
A. M. S.
, and
Kazemi
,
M.
,
2017
, “
Thermal Vibration of Two-Dimensional Functionally Graded (2D-FG) Porous Timoshenko Nanobeams
,”
Steel Compos. Struct.
,
25
(
4
), pp.
514
426
. 10.12989/scs.2017.25.4.000
40.
Shafiei
,
N.
, and
Kazemi
,
M.
,
2017
, “
Buckling Analysis on the Bi-Dimensional Functionally Graded Porous Tapered Nano-/Micro-Scale Beams
,”
Aerospace Sci. Technol.
,
66
, pp.
1
11
. 10.1016/j.ast.2017.02.019
41.
Khaniki
,
H. B.
, and
Rajasekaran
,
S.
,
2018
, “
Mechanical Analysis of Non-Uniform Bi-Directional Functionally Graded Intelligent Micro-Beams Using Modified Couple Stress Theory
,”
Mater. Res. Express
,
5
(
5
), p.
055703
. 10.1088/2053-1591/aabe62
42.
Mirjavadi
,
S. S.
,
Matin
,
A.
,
Shafiei
,
N.
,
Rabby
,
S.
, and
Mohasel Afshari
,
B.
,
2017
, “
Thermal Buckling Behavior of Two-Dimensional Imperfect Functionally Graded Microscale-Tapered Porous Beam
,”
J. Therm. Stresses
,
40
(
10
), pp.
1201
1214
. 10.1080/01495739.2017.1332962
43.
Lal
,
R.
, and
Dangi
,
C.
,
2019
, “
Thermomechanical Vibration of Bi-Directional Functionally Graded Non-Uniform Timoshenko Nanobeam Using Nonlocal Elasticity Theory
,”
Compos. Part B: Eng.
,
172
, pp.
724
742
. 10.1016/j.compositesb.2019.05.076
44.
Karami
,
B.
,
Janghorban
,
M.
, and
Rabczuk
,
T.
,
2019
, “
Dynamics of Two-Dimensional Functionally Graded Tapered Timoshenko Nanobeam in Thermal Environment Using Nonlocal Strain Gradient Theory
,”
Compos. Part B: Eng.
,
182
, p.
107622
. 10.1016/j.compositesb.2019.107622
45.
Barati
,
M. R.
, and
Shahverdi
,
H.
,
2018
, “
Nonlinear Thermal Vibration Analysis of Refined Shear Deformable FG Nanoplates: Two Semi-Analytical Solutions
,”
J. Braz. Soc. Mech. Sci. Eng.
,
40
(
2
), pp.
1
15
. 10.1007/s40430-018-0968-0
46.
Khaniki
,
H. B.
, and
Hosseini-Hashemi
,
S.
,
2017
, “
Buckling Analysis of Tapered Nanobeams Using Nonlocal Strain Gradient Theory and a Generalized Differential Quadrature Method. Analytical Solution
,”
Mater. Res. Express
,
4
. https://doi.org/10.1088/2053-1591/aa7111
47.
Shu
,
C.
,
2011
,
Differential Quadrature and its Application in Engineering
,
Springer
,
London
.
48.
Eltaher
,
M. A.
,
Khater
,
M. E.
,
Park
,
S.
,
Abdel-Rahman
,
E.
, and
Yavuz
,
M.
,
2016
, “
On the Static Stability of Nonlocal Nanobeams Using Higher-Order Beam Theories
,”
Adv. Nano Res.
,
4
(
1
), pp.
51
64
. 10.12989/anr.2016.4.1.051
49.
Ebrahimi
,
F.
, and
Barati
,
M. R.
,
2017
, “
Buckling Analysis of Nonlocal Third-Order Shear Deformable Functionally Graded Piezoelectric Nanobeams Embedded in Elastic Medium
,”
J. Braz. Soc. Mech. Sci. Eng.
,
39
(
3
), pp.
937
952
. 10.1007/s40430-016-0551-5
You do not currently have access to this content.