Abstract

It has been shown that shunting electromagnetic devices with electrical networks can be used to damp vibrations. These absorbers have however limitations that restrict the control performance, i.e., the total damping of the system and robustness versus parameter variations. On the other hand, the electromagnetic devices are widely used in active control techniques as an actuator. The major difficulty that arises in practical implementation of these techniques is the power consumption required for conditioners and control units. In this study, robust hybrid control system is designed to combine the passive electromagnetic shunt damper with an active control in order to improve the performance with low power consumption. Two different active control laws, based on an active voltage source and an active current source, are proposed and compared. The control law of the active voltage source is the direct velocity feedback. However, the control law of the active current source is a revisited direct velocity feedback. The method of maximum damping, i.e., maximizing the exponential time-decay rate of the response subjected to the external impulse forcing function, is employed to optimize the parameters of the passive and the hybrid control systems. The advantage of using the hybrid control configuration in comparison with purely active control system is also investigated in terms of the power consumption. Besides these assets, it is demonstrated that the hybrid control system can tolerate a much higher level of uncertainty than the purely passive control systems.

References

1.
Behrens
,
S.
,
Fleming
,
A. J.
, and
Reza Moheimani
,
S. O.
,
2005
, “
Passive Vibration Control Via Electromagnetic Shunt Damping
,”
IEEE/ASME Trans. Mech.
,
10
(
1
), pp.
118
122
. 10.1109/TMECH.2004.835341
2.
Marneffe
,
B. De
,
2007
,
Active and Passive Vibration Isolation and Damping Via Shunted Transducers
.
These
,
Faculté des Sciences Appliquées, Université Libre de Bruxelles
.
3.
Inoue
,
T.
,
Ishida
,
Y.
, and
Sumi
,
M.
,
2008
, “
Vibration Suppression Using Electromagnetic Resonant Shunt Damper
,”
ASME J. Vib. Acoust.
,
130
(
4
), p.
041003
. 10.1115/1.2889916
4.
Den Hartog
,
J. P.
,
1934
,
Mechanical Vibrations
,
McGraw-Hill
,
New York
.
5.
Tang
,
X.
,
Liu
,
Y.
,
Cui
,
W.
, and
Zuo
,
L.
,
2016
, “
Analytical Solutions to h2 and h Optimizations of Resonant Shunted Electromagnetic Tuned Mass Damper and Vibration Energy Harvester
,”
ASME J. Vib. Acoust.
,
138
(
1
), p.
011018
. 10.1115/1.4031823
6.
Zhu
,
S.
,
Shen
,
W.
, and
Qian
,
X.
,
2013
, “
Dynamic Analogy Between An Electromagnetic Shunt Damper and a Tuned Mass Damper
,”
Smart Mater. Struct.
,
22
(
11
), p.
115018
. 10.1088/0964-1726/22/11/115018
7.
Ormondroyd
,
J.
, and
Den Hartog
,
J. P.
,
1928
, “
The Theory of the Dynamic Vibration Absorber
,”
ASME J. Appl. Mech.
,
50
(
7
), pp.
9
22
.
8.
McDaid
,
A. J.
, and
Mace
,
B. R.
,
2013
, “
A Self-Tuning Electromagnetic Vibration Absorber With Adaptive Shunt Electronics
,”
Smart Mater. Struct.
,
22
(
10
), p.
105013
. 10.1088/0964-1726/22/10/105013
9.
McDaid
,
A. J
, and
Mace
,
B. R
,
2016
, “
A Robust Adaptive Tuned Vibration Absorber Using Semi-Passive Shunt Electronics
,”
IEEE Trans. Indus. Electron.
,
63
(
8
), pp.
5069
5077
. 10.1109/tie.2016.2554541
10.
Niederberger
,
D.
,
Behrens
,
S.
,
Fleming
,
A. J
,
Reza Moheimani
,
S. O.
, and
Morari
,
M.
,
2006
, “
Adaptive Electromagnetic Shunt Damping
,”
IEEE/ASME Trans. Mech.
,
11
(
1
), pp.
103
108
. 10.1109/TMECH.2005.859844
11.
Elliott
,
S. J
, and
Zilletti
,
M
,
2014
, “
Scaling of Electromagnetic Transducers for Shunt Damping and Energy Harvesting
,”
J. Sound. Vib.
,
333
(
8
), pp.
2185
2195
. 10.1016/j.jsv.2013.11.036
12.
Yan
,
B.
,
Zhang
,
X.
,
Luo
,
Y.
,
Zhang
,
Z.
,
Xie
,
S.
, and
Zhang
,
Y.
,
2014
, “
Negative Impedance Shunted Electromagnetic Absorber for Broadband Absorbing: Experimental Investigation
,”
Smart Mater. Struct.
,
23
(
12
), p.
125044
. 10.1088/0964-1726/23/12/125044
13.
Yan
,
B.
,
Wang
,
K.
,
Kang
,
C.-X.
,
Zhang
,
X.-N.
, and
Wu
,
C.-Y.
,
2017
, “
Self-Sensing Electromagnetic Transducer for Vibration Control of Space Antenna Reflector
,”
IEEE/ASME Trans. Mech.
,
22
(
5
), pp.
1944
1951
. 10.1109/TMECH.2017.2712718
14.
Zhou
,
S.
,
Jean-Mistral
,
C.
, and
Chesné
,
S.
,
2019
, “
Electromagnetic Shunt Damping With Negative Impedances: Optimization and Analysis
,”
J. Sound. Vib.
,
445
, pp.
188
203
. 10.1016/j.jsv.2019.01.014
15.
Yan
,
B.
,
Wenguang Zheng
,
H. M.
,
Jian
,
B.
,
Wang
,
K.
, and
Wu
,
C.
,
2019
, “
Nonlinear Electromagnetic Shunt Damping for Nonlinear Vibration Isolators
,”
IEEE/ASME Trans. Mech.
,
24
(
4
), pp.
1851
1860
. 10.1109/TMECH.2019.2928583
16.
Yan
,
B.
,
Ma
,
H.
,
Zhang
,
L.
,
Zheng
,
W.
,
Wang
,
K.
, and
Wu
,
C.
,
2020
, “
A Bistable Vibration Isolator With Nonlinear Electromagnetic Shunt Damping
,”
Mech. Syst. Signal Process.
,
136
, p.
106504
. 10.1016/j.ymssp.2019.106504
17.
Stabile
,
A.
,
Aglietti
,
G. S.
,
Richardson
,
G.
, and
Smet
,
G.
,
2017
, “
Design and Verification of a Negative Resistance Electromagnetic Shunt Damper for Spacecraft Micro-Vibration
,”
J. Sound. Vib.
,
386
, pp.
38
49
. 10.1016/j.jsv.2016.09.024
18.
Paknejad
,
A.
,
Zhao
,
G.
,
Osée
,
M.
,
Deraemaeker
,
A.
,
Robert
,
F.
, and
Collette
,
C.
,
2020
, “
A Novel Design of Positive Position Feedback Controller Based on Maximum Damping and h2 Optimization
,”
J. Vib. Control
,
26
, pp.
1155
1164
. 10.1177/1077546319892755
19.
Zhao
,
G.
,
Paknejad
,
A.
,
Raze
,
G.
,
Deraemaeker
,
A.
,
Kerschen
,
G.
, and
Collette
,
C.
,
2019
, “
Nonlinear Positive Position Feedback Control for Mitigation of Nonlinear Vibrations
,”
Mech. Syst. Signal Process.
,
132
, pp.
457
470
. 10.1016/j.ymssp.2019.07.005
20.
Fleming
,
A. J
,
Behrens
,
S.
, and
Reza Moheimani
,
S. O.
,
2003
, “
Active Lqr and h2 Shunt Control of Electromagnetic Transducers
,”
42nd IEEE International Conference on Decision and Control (IEEE Cat. No. 03CH37475)
, Vol.
3
,
Maui, HI
,
IEEE
, pp.
294
2299
.
21.
Fleming
,
A. J
,
Reza Moheimani
,
S. O.
, and
Behrens
,
S.
,
2005
, “
Synthesis and Implementation of Sensor-Less Active Shunt Controllers for Electromagnetically Actuated Systems
,”
IEEE Trans. Control Syst. Technol.
,
13
(
2
), pp.
246
261
. 10.1109/TCST.2004.839565
22.
Fleming
,
A. J
, and
Reza Moheimani
,
S. O.
,
2006
, “
Inertial Vibration Control Using a Shunted Electromagnetic Transducer
,”
IEEE/ASME Trans. Mech.
,
11
(
1
), pp.
84
92
. 10.1109/TMECH.2005.863364
23.
Preumont
,
A.
,
2011
,
Vibration Control of Active Structures. An Introduction
, 3rd ed.,
Springer
,
Heidelberg
, Germany.
24.
Collette
,
C.
, and
Chesne
,
S.
,
2016
, “
Robust Hybrid Mass Damper
,”
J. Sound. Vib.
,
375
, pp.
19
27
. 10.1016/j.jsv.2016.04.030
25.
Chesné
,
S.
, and
Collette
,
C.
,
2018
, “
Experimental Validation of Fail-Safe Hybrid Mass Damper
,”
J. Vib. Control
,
24
(
19
), pp.
4395
4406
. 10.1177/1077546317724949
26.
Chesne
,
S.
,
Inquieté
,
G
,
Cranga
,
P
,
Legrand
,
F
, and
Petitjean
,
B
,
2019
, “
Innovative Hybrid Mass Damper for Dual-Loop Controller
,”
Mech. Syst. Signal Process.
,
115
, pp.
514
523
. 10.1016/j.ymssp.2018.06.023
27.
Alujević
,
N.
,
Zhao
,
G.
,
Depraetere
,
B.
,
Sas
,
P.
,
Pluymers
,
B.
, and
Desmet
,
W.
,
2014
, “
H2 Optimal Vibration Control Using Inertial Actuators and a Comparison With Tuned Mass Dampers
,”
J. Sound. Vib.
,
333
(
18
), pp.
4073
4083
. 10.1016/j.jsv.2014.04.038
28.
Agnes
,
G. S
,
1994
, “
Active/passive Piezoelectric Vibration Suppression
,”
Smart Structures and Materials 1994: Passive Damping
, Vol.
2193
,
Orlando, FL
,
International Society for Optics and Photonics
, pp.
24
34
.
29.
Tsai
,
M. S.
, and
Wang
,
K. W.
,
1999
, “
On the Structural Damping Characteristics of Active Piezoelectric Actuators With Passive Shunt
,”
J. Sound. Vib.
,
221
(
1
), pp.
1
22
. 10.1006/jsvi.1998.1841
30.
Tang
,
J
, and
Wang
,
K. W.
,
2001
, “
Active-Passive Hybrid Piezoelectric Networks for Vibration Control: Comparisons and Improvement
,”
Smart Mater. Struct.
,
10
(
4
), p.
794
. 10.1088/0964-1726/10/4/325
31.
Morgan
,
Ronald A
, and
Wang
,
K. W.
,
1998
, “
An Integrated Active-Parametric Control Approach for Active-Passive Hybrid Piezoelectric Network With Variable Resistance
,”
J. Intell. Mater. Syst. Struct.
,
9
(
7
), pp.
564
573
. 10.1177/1045389X9800900708
32.
Morgan
,
R. A.
, and
Wang
,
K. W.
,
2002
, “
An Active-Passive Piezoelectric Absorber for Structural Vibration Control Under Harmonic Excitations With Time-Varying Frequency, Part 1: Algorithm Development and Analysis
,”
ASME J. Vib. Acoust.
,
124
(
1
), pp.
77
83
. 10.1115/1.1419201
33.
Bo
Fang
,
MingMing
Li
,
Cao
,
DengQing
, and
Huang
,
WenHu
,
2013
, “
Modeling and Analysis of Cantilever Beam With Active-Passive Hybrid Piezoelectric Network
,”
Sci. China Technol. Sci.
,
56
(
9
), pp.
2326
2335
. 10.1007/s11431-013-5320-4
34.
Tsai
,
M. S.
, and
Wang
,
K. W.
,
2002
, “
A Coupled Robust Control/Optimization Approach for Active-Passive Hybrid Piezoelectric Networks
,”
Smart Mater. Struct.
,
11
(
3
), p.
389
. 10.1088/0964-1726/11/3/309
35.
Zhao
,
Y.
,
2010
, “
Vibration Suppression of a Quadrilateral Plate Using Hybrid Piezoelectric Circuits
,”
J. Vib. Control
,
16
(
5
), pp.
701
720
. 10.1177/1077546309106529
36.
Tsai
,
M. S.
, and
Wang
,
K. W.
,
1996
, “
Control of a Ring Structure with Multiple Active-passive Hybrid Piezoelectrical Networks
,”
Smart Mater. Struct.
,
5
(
5
), p.
695
. 10.1088/0964-1726/5/5/017
37.
Hagedorn
,
P.
and
Spelsberg-Korspeter
,
G.
, eds.,
2014
, “Electromagnetic and Piezoelectric Transducers,”
Active and Passive Vibration Control of Structures
,
Darmstadt
,
Udine
, pp.
213
248
.
38.
Slotine
,
J.-J. E
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
, Vol.
199
,
Prentice hall Englewood Cliffs
,
NJ
.
39.
Horowitz
,
P.
, and
Hill
,
W.
,
1989
,
The Art of Electronics
, 2nd ed.,
Cambridge University Press
,
New York
.
40.
Chesne
,
S
,
Billon
,
K
,
Collette
,
C
, and
Zhao
,
G
,
2018
, “
Power Flow Analysis for Hybrid Mass Damper Design
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
8
,
Quebec City, Quebec, Canada
,
American Society of Mechanical Engineers
, pp.
1
6
.
41.
Zilletti
,
M.
,
Gardonio
,
P.
, and
Elliott
,
S. J
,
2014
, “
Optimisation of a Velocity Feedback Controller to Minimise Kinetic Energy and Maximise Power Dissipation
,”
J. Sound. Vib.
,
333
(
19
), pp.
4405
4414
. 10.1016/j.jsv.2014.04.036
You do not currently have access to this content.