Abstract

Due to the great progresses in the fields of smart structures, especially smart soft materials and structures, the parametric control of nonlinear systems attracts extensive attentions in scientific and industrial communities. This paper devotes to the derivation of the optimal parametric control strategy for nonlinear random vibrating systems, in which the excitations are confined to Gaussian white noises. For a prescribed performance index balancing the control performance and control cost, the stochastic dynamic programming equation with respect to the value function is first derived by the principle of dynamic programming. The optimal feedback control law is established according to the extremum condition. The explicit expression of the value function is determined by approximately expressing as a quadratic function of state variables and by solving the final dynamic programming equation. The application and efficacy of the optimal parametric control are illustrated by a random-excited Duffing oscillator and a dielectric elastomer balloon with random pressure. The numerical results show that the optimal parameter control possesses good effectiveness, high efficiency, and high robustness to excitation intensity, and is superior than the associated optimal bounded parametric control.

References

1.
Crandall
,
S. H.
, and
Mark
,
W. D.
,
1963
,
Random Vibration in Mechanical Systems
,
Academic Press
,
New York
.
2.
Lin
,
Y. K.
, and
Cai
,
G. Q.
,
1995
,
Probabilistic Structural Dynamics: Advanced Theory and Application
,
McGraw-Hill
,
New York
.
3.
Yong
,
J. M.
, and
Zhou
,
X. Y.
,
1999
,
Stochastic Controls: Hamiltonian Systems and HJB Equations
,
Springer-Verlag
,
New York
.
4.
Ma
,
J.
, and
Yong
,
J.
,
1999
,
Forward-Backward Stochastic Differential Equations and Their Applications
,
Springer-Verlag
,
Berlin
.
5.
Kovaleva
,
A.
,
1999
,
Optimal Control of Mechanical Oscillations
,
Springer-Verlag
,
Berlin
.
6.
Fleming
,
W. H.
, and
Rishel
,
R. W.
,
1975
,
Deterministic and Optimal Control
,
Springer
,
New York
.
7.
Duncan
,
T. E.
, and
Pasik-Duncan
,
B.
,
2017
, “
A Direct Approach to Linear-Quadratic Stochastic Control
,”
Opusc. Math.
,
37
(
6
), pp.
821
827
. 10.7494/OpMath.2017.37.6.821
8.
Crespo
,
L. G.
, and
Sun
,
J. Q.
,
2003
, “
Stochastic Optimal Control via Bellman’s Principle
,”
Automatica
,
39
(
12
), pp.
2109
2211
. 10.1016/S0005-1098(03)00238-3
9.
Ma
,
J.
,
Protter
,
P.
, and
Yong
,
J.
,
1994
, “
Solving Forward-Backward Stochastic Differential Equations Explicitly—A Four Step Scheme
,”
Probab. Theory Relat. Fields
,
98
(
3
), pp.
339
359
. 10.1007/BF01192258
10.
Socha
,
L.
,
2005
, “
Linearization in Analysis of Nonlinear Stochastic Systems: Recent Results—Part I: Theory
,”
ASME Appl. Mech. Rev.
,
58
(
3
), pp.
178
205
. 10.1115/1.1896368
11.
Socha
,
L.
,
2005
, “
Linearization in Analysis of Nonlinear Stochastic Systems: Recent Results—Part II: Application
,”
ASME Appl. Mech. Rev.
,
58
(
5
), pp.
303
315
. 10.1115/1.1995715
12.
Zhu
,
W. Q.
,
2006
, “
Nonlinear Stochastic Dynamics and Control in Hamiltonian Formulation
,”
ASME Appl. Mech. Rev.
,
59
(
4
), pp.
230
248
. 10.1115/1.2193137
13.
Zhu
,
W. Q.
,
Ying
,
Z. G.
, and
Soong
,
T. T.
,
2001
, “
An Optimal Nonlinear Feedback Control Strategy for Randomly Excited Structural Systems
,”
Nonlinear Dyn.
,
24
(
1
), pp.
31
51
. 10.1023/A:1026527404183
14.
Xiong
,
H.
, and
Zhu
,
W. Q.
,
2016
, “
A Stochastic Optimal Control Strategy for Viscoelastic Systems With Actuator Saturation
,”
Probab. Eng. Mech.
,
45
, pp.
44
51
. 10.1016/j.probengmech.2016.02.004
15.
Gu
,
X. D.
, and
Zhu
,
W. Q.
,
2014
, “
Optimal Bounded Control of Quasi Non-Integrable Hamiltonian Systems Using Stochastic Maximum Principle
,”
Nonlinear Dyn.
,
76
(
2
), pp.
1051
1058
. 10.1007/s11071-013-1188-x
16.
Gu
,
D.-K.
,
Zhang
,
D. W.
, and
Duan
,
G. R.
,
2019
, “
Parametric Control to a Type of Quasi-Linear High-Order Systems via Output Feedback
,”
Eur. J. Control
,
47
, pp.
44
52
. 10.1016/j.ejcon.2018.09.008
17.
Lai
,
J. S.
, and
Wang
,
K. W.
,
1996
, “
Parametric Control of Structural Vibrations via Adaptable Stiffness Dynamic Absorbers
,”
ASME J. Vib. Acoust.
,
118
(
1
), pp.
41
47
. 10.1115/1.2889633
18.
Rahn
,
C. D.
, and
Mote
,
C. D.
,
1994
, “
Parametric Control of Flexible Systems
,”
ASME J. Vib. Acoust.
,
116
(
3
), pp.
379
385
. 10.1115/1.2930439
19.
Liang
,
Z.
,
Tong
,
M.
, and
Lee
,
G. C.
,
1999
, “
A Real-Time Structural Parameter Modification (RSPM) Approach for Random Vibration Reduction: Part I, Principle
,”
Probab. Eng. Mech.
,
14
(
4
), pp.
349
362
. 10.1016/S0266-8920(98)00039-3
20.
Wang
,
K. W.
,
Lai
,
J. S.
, and
Yu
,
W. K.
,
1996
, “
An Energy-Based Parametric Control Approach for Structural Vibration Suppression via Semi-Active Piezoelectric Networks
,”
ASME J. Vib. Acoust.
,
118
(
3
), pp.
505
509
. 10.1115/1.2888213
21.
Dimentberg
,
M. F.
, and
Bratus
,
A. S.
,
2000
, “
Bounded Parametric Control of Random Vibrations
,”
Proc. R. Soc. A
,
456
(
2002
), pp.
2351
2363
. 10.1098/rspa.2000.0615
22.
Felgenhauer
,
U.
,
2009
, “Directional Sensitivity Differentials for Parametric Bang–Bang Control Problems (Lecture Notes in Computer Science),”
Large-Scale Scientific Computing, 5910
,
I.
Lirkov
,
S.
Margenov
, and
J.
Wasniewski
, eds.,
Springer-Verlag
,
Berlin
, pp.
264
271
.
23.
Pepe
,
G.
, and
Carcaterra
,
A.
, “
VFC—Variational Feedback Controller and Its Application to Semi-Active Suspensions
,”
Mech. Syst. Sig. Process.
,
76–77
, pp.
72
92
.
24.
Pepe
,
G.
,
Carcaterra
,
A.
,
Giorgio
,
I.
, and
Vescovo
,
D. D.
,
2016
, “
Variational Feedback Control for a Nonlinear Beam Under an Earthquake Excitation
,”
Math. Mech. Solids
,
21
(
10
), pp.
1234
1246
. 10.1177/1081286514562878
25.
Ying
,
Z. G.
,
Ni
,
Y. Q.
, and
Duan
,
Y. F.
,
2015
, “
Parametric Optimal Bounded Feedback Control for Smart Parameter-Controllable Composite Structures
,”
J. Sound Vib.
,
339
, pp.
38
55
. 10.1016/j.jsv.2014.11.018
26.
Jin
,
X. L.
,
Tian
,
Y.
,
Wang
,
Y.
, and
Huang
,
Z. L.
,
2018
, “
Optimal Bounded Parametric Control for Random Vibration of Dielectric Elastomer Balloon
,”
Nonlinear Dyn.
,
94
(
2
), pp.
1081
1093
. 10.1007/s11071-018-4410-z
27.
Fleming
,
W. H.
, and
Soner
,
H. M.
,
1993
,
Controlled Markov Processes and Viscosity Solutions
,
Springer
,
New York
.
28.
Jin
,
X. L.
,
Wang
,
Y.
,
Chen
,
Z. Q.
, and
Huang
,
Z. L.
,
2017
, “
Response Analysis of Dielectric Elastomer Spherical Membrane to Harmonic Voltage and Random Pressure
,”
Smart Mater. Struct.
,
26
(
3
), p.
035063
. 10.1088/1361-665X/aa5e44
You do not currently have access to this content.