Abstract

By exchanging the internal energy between coupled vibration modes, internal-resonance-based energy harvesters may provide an effective solution to broadening and enhancing bandwidth and power performance in dealing with natural vibration sources. With the development of piezoelectric-based transducers, thickness and face shear coefficients in proper piezoelectric elements can also generate power output from shear deformation on the core vibrating elements. However, in most cantilever-based energy harvesters that focused on bending modes, the shear responses were neglected. In this paper, we present an internal-resonance-based piezoelectric energy harvester with three-dimensional coupled bending and torsional modes, for the first time. The fine-tuned system leverages a two-to-one internal resonance between its first torsion and second bending modes to enhance the power output with piezoelectric effects. The dynamic behavior implies the coexistence of in-plane and out-of-plane motions under a single excitation frequency, and the corresponding strain changes in the bending and shear directions are captured by bonded piezoelectric transducers. Dependence between excitation levels and the internal-resonance phenomenon is justified as a critical system parameter study; the results also indicate that an intriguing non-periodic region exists near the center frequency. The outcomes of this study feature a multi-directional and multi-modal energy harvester that displays rich dynamic behaviors. The operational bandwidth is promising for broadband energy harvesting, and the output voltage is enhanced by capturing both in-plane and out-of-plane motions at the same time.

References

1.
Shaikh
,
F. K.
, and
Zeadally
,
S.
,
2016
, “
Energy Harvesting in Wireless Sensor Networks: A Comprehensive Review
,”
Renewable Sustainable Energy Rev.
,
55
, pp.
1041
1054
.
2.
Bedi
,
G.
,
Venayagamoorthy
,
G. K.
,
Singh
,
R.
,
Brooks
,
R. R.
, and
Wang
,
K.
,
2018
, “
Review of Internet of Things (IoT) in Electric Power and Energy Systems
,”
IEEE Internet Things J.
,
5
(
2
), pp.
847
870
.
3.
Jiang
,
D.
,
Shi
,
B.
,
Ouyang
,
H.
,
Fan
,
Y.
,
Wang
,
Z. L.
, and
Li
,
Z.
,
2020
, “
Emerging Implantable Energy Harvesters and Self-Powered Implantable Medical Electronics
,”
ACS Nano
,
14
(
6
), pp.
6436
6448
.
4.
Yan
,
Z.
,
Sun
,
W.
,
Hajj
,
M. R.
,
Zhang
,
W.
, and
Tan
,
T.
,
2020
, “
Ultra-Broadband Piezoelectric Energy Harvesting via Bistable Multi-Hardening and Multi-Softening
,”
Nonlinear Dyn.
,
100
(
2
), pp.
1057
1077
.
5.
Kumar
,
A.
,
Ali
,
S. F.
, and
Arockiarajan
,
A.
,
2019
, “
Influence of Piezoelectric Energy Transfer on the Interwell Oscillations of Multistable Vibration Energy Harvesters
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
3
), p.
031001
.
6.
Wang
,
G.
,
Ju
,
Y.
,
Liao
,
W.-H.
,
Zhao
,
Z.
,
Li
,
Y.
, and
Tan
,
J.
,
2021
, “
A Hybrid Piezoelectric Device Combining a Tri-Stable Energy Harvester With an Elastic Base for Low-Orbit Vibration Energy Harvesting Enhancement
,”
Smart Mater. Struct.
,
30
(
7
), p.
075028
.
7.
Ibrahim
,
A.
,
Towfighian
,
S.
, and
Younis
,
M. I.
,
2017
, “
Dynamics of Transition Regime in Bistable Vibration Energy Harvesters
,”
ASME J. Vib. Acoust.
,
139
(
5
), p.
051008
.
8.
Xia
,
Y.
,
Ruzzene
,
M.
, and
Erturk
,
A.
,
2020
, “
Bistable Attachments for Wideband Nonlinear Vibration Attenuation in a Metamaterial Beam
,”
Nonlinear Dyn.
,
102
(
3
), pp.
1285
1296
.
9.
Song
,
X.
, and
Liu
,
H.
,
2021
, “
Free Vibration of Bistable Clamped–Clamped Beams: Modeling and Experiment
,”
ASME J. Vib. Acoust.
,
143
(
4
), p.
044501
.
10.
Wang
,
Z.
,
Li
,
T.
,
Du
,
Y.
,
Yan
,
Z.
, and
Tan
,
T.
,
2021
, “
Nonlinear Broadband Piezoelectric Vibration Energy Harvesting Enhanced by Inter-Well Modulation
,”
Energy Convers. Manage.
,
246
, p.
114661
.
11.
Zhao
,
W.
,
Zheng
,
R.
,
Yin
,
X.
,
Zhao
,
X.
, and
Nakano
,
K.
,
2022
, “
An Electromagnetic Energy Harvester of Large-Scale Bistable Motion by Application of Stochastic Resonance
,”
ASME J. Vib. Acoust.
,
144
(
1
), p.
011007
.
12.
Zhu
,
W.
, and
Morandini
,
M.
,
2021
, “
Nonlinear Smart Beam Model for Energy Harvesting
,”
ASME J. Vib. Acoust.
,
143
(
5
), p.
051008
.
13.
Emam
,
S. A.
,
Hobeck
,
J.
, and
Inman
,
D. J.
,
2019
, “
Experimental Investigation Into the Nonlinear Dynamics of a Bistable Laminate
,”
Nonlinear Dyn.
,
95
(
4
), pp.
3019
3039
.
14.
Wu
,
M. Q.
,
Zhang
,
W.
, and
Niu
,
Y.
,
2021
, “
Experimental and Numerical Studies on Nonlinear Vibrations and Dynamic Snap-Through Phenomena of Bistable Asymmetric Composite Laminated Shallow Shell Under Center Foundation Excitation
,”
Eur. J. Mech. A/Solids
,
89
, p.
104303
.
15.
Xie
,
Z.
,
Zhou
,
S.
,
Xiong
,
J.
, and
Huang
,
W.
,
2019
, “
The Benefits of a Magnetically Coupled Asymmetric Monostable Dual-Cantilever Energy Harvester Under Random Excitation
,”
J. Intell. Mater. Syst. Struct.
,
30
(
20
), pp.
3136
3145
.
16.
Nguyen
,
H. T.
,
Genov
,
D.
, and
Bardaweel
,
H.
,
2019
, “
Mono-Stable and Bi-Stable Magnetic Spring Based Vibration Energy Harvesting Systems Subject to Harmonic Excitation: Dynamic Modeling and Experimental Verification
,”
Mech. Syst. Signal Process
,
134
, p.
106361
.
17.
Huang
,
Y.
,
Liu
,
W.
,
Yuan
,
Y.
, and
Zhang
,
Z.
,
2020
, “
High-Energy Orbit Attainment of a Nonlinear Beam Generator by Adjusting the Buckling Level
,”
Sens. Actuators, A
,
312
, p.
112164
.
18.
Yang
,
W.
, and
Towfighian
,
S.
,
2019
, “
A Parametric Resonator With Low Threshold Excitation for Vibration Energy Harvesting
,”
J. Sound Vib.
,
446
, pp.
129
143
.
19.
Fan
,
Y.
,
Ghayesh
,
M. H.
, and
Lu
,
T.-F.
,
2020
, “
Enhanced Nonlinear Energy Harvesting Using Combined Primary and Parametric Resonances: Experiments With Theoretical Verifications
,”
Energy Convers. Manage.
,
221
, p.
113061
.
20.
Fan
,
Y.
,
Ghayesh
,
M. H.
, and
Lu
,
T.-F.
,
2021
, “
A Broadband Magnetically Coupled Bistable Energy Harvester via Parametric Excitation
,”
Energy Convers. Manage.
,
244
, p.
114505
.
21.
Tan
,
T.
,
Wang
,
Z.
,
Zhang
,
L.
,
Liao
,
W.-H.
, and
Yan
,
Z.
,
2021
, “
Piezoelectric Autoparametric Vibration Energy Harvesting With Chaos Control Feature
,”
Mech. Syst. Signal Process
,
161
, p.
107989
.
22.
Surappa
,
S.
,
Erdogan
,
T.
, and
Degertekin
,
F. L.
,
2021
, “
Multiple Electrically Tunable Parametric Resonances in a Capacitively Coupled Electromechanical Resonator for Broadband Energy Harvesting
,”
Smart Mater. Struct.
,
30
(
4
), p.
045024
.
23.
Fan
,
Y.
,
Ghayesh
,
M. H.
,
Lu
,
T.-F.
, and
Amabili
,
M.
,
2022
, “
Design, Development, and Theoretical and Experimental Tests of a Nonlinear Energy Harvester via Piezoelectric Arrays and Motion Limiters
,”
Int. J. Non-Linear Mech.
,
142
, p.
103974
.
24.
Wang
,
J.
,
Cai
,
S.
,
Qin
,
L.
,
Liu
,
D.
,
Wei
,
P.
, and
Tang
,
L.
,
2020
, “
Modeling and Electromechanical Performance Analysis of Frequency-Variable Piezoelectric Stack Transducers
,”
J. Intell. Mater. Syst. Struct.
,
31
(
6
), pp.
897
910
.
25.
Baroudi
,
S.
,
Samaali
,
H.
, and
Najar
,
F.
,
2021
, “
Energy Harvesting Using a Clamped–Clamped Piezoelectric–Flexoelectric Beam
,”
J. Phys. D: Appl. Phys.
,
54
(
41
), p.
415501
.
26.
Hu
,
G.
,
Liang
,
J.
,
Lan
,
C.
, and
Tang
,
L.
,
2020
, “
A Twist Piezoelectric Beam for Multi-Directional Energy Harvesting
,”
Smart Mater. Struct.
,
29
(
11
), p.
11LT01
.
27.
Wang
,
X.
,
Wu
,
H.
, and
Yang
,
B.
,
2020
, “
Nonlinear Multi-Modal Energy Harvester and Vibration Absorber Using Magnetic Softening Spring
,”
J. Sound Vib.
,
476
, p.
115332
.
28.
Tan
,
Q.
,
Fan
,
K.
,
Tao
,
K.
,
Zhao
,
L.
, and
Cai
,
M.
,
2020
, “
A Two-Degree-of-Freedom String-Driven Rotor for Efficient Energy Harvesting From Ultra-Low Frequency Excitations
,”
Energy
,
196
, p.
117107
.
29.
Chen
,
L.-Q.
, and
Jiang
,
W.-A.
,
2015
, “
Internal Resonance Energy Harvesting
,”
ASME J. Appl. Mech.
,
82
(
3
), p.
031004
.
30.
Nayfeh
,
A. H.
,
Balachandran
,
B.
,
Colbert
,
M. A.
, and
Nayfeh
,
M. A.
,
1989
, “
An Experimental Investigation of Complicated Responses of a Two-Degree-of-Freedom Structure
,”
ASME J. Appl. Mech.
,
56
(
4
), pp.
960
967
.
31.
Chen
,
L.-Q.
,
Jiang
,
W.-A.
,
Panyam
,
M.
, and
Daqaq
,
M. F.
,
2016
, “
A Broadband Internally Resonant Vibratory Energy Harvester
,”
ASME J. Vib. Acoust.
,
138
(
6
), p.
061007
.
32.
Fan
,
Y.
,
Ghayesh
,
M. H.
, and
Lu
,
T.-F.
,
2022
, “
High-Efficient Internal Resonance Energy Harvesting: Modelling and Experimental Study
,”
Mech. Syst. Signal Process
,
180
, p.
109402
.
33.
Xiong
,
L.
,
Tang
,
L.
, and
Mace
,
B. R.
,
2016
, “
Internal Resonance With Commensurability Induced by an Auxiliary Oscillator for Broadband Energy Harvesting
,”
Appl. Phys. Lett.
,
108
(
20
), p.
203901
.
34.
Yang
,
W.
, and
Towfighian
,
S.
,
2017
, “
A Hybrid Nonlinear Vibration Energy Harvester
,”
Mech. Syst. Signal Process
,
90
, pp.
317
333
.
35.
Wu
,
Y.
,
Ji
,
H.
,
Qiu
,
J.
,
Liu
,
W.
, and
Zhao
,
J.
,
2018
, “
An Internal Resonance Based Frequency Up-Converting Energy Harvester
,”
J. Intell. Mater. Syst. Struct.
,
29
(
13
), pp.
2766
2781
.
36.
Lu
,
Z.-Q.
,
Zhang
,
F.-Y.
,
Fu
,
H.-L.
,
Ding
,
H.
, and
Chen
,
L.-Q.
,
2021
, “
Rotational Nonlinear Double-Beam Energy Harvesting
,”
Smart Mater. Struct.
,
31
(
2
), p.
025020
.
37.
Erturk
,
A.
,
Renno
,
J. M.
, and
Inman
,
D. J.
,
2009
, “
Modeling of Piezoelectric Energy Harvesting From an L-Shaped Beam-Mass Structure With an Application to UAVs
,”
J. Intell. Mater. Syst. Struct.
,
20
(
5
), pp.
529
544
.
38.
Cao
,
D. X.
,
Leadenham
,
S.
, and
Erturk
,
A.
,
2015
, “
Internal Resonance for Nonlinear Vibration Energy Harvesting
,”
Eur. Phys. J.: Spec. Top.
,
224
(
14
), pp.
2867
2880
.
39.
Harne
,
R. L.
,
Sun
,
A.
, and
Wang
,
K. W.
,
2016
, “
Leveraging Nonlinear Saturation-Based Phenomena in an L-Shaped Vibration Energy Harvesting System
,”
J. Sound Vib.
,
363
, pp.
517
531
.
40.
Nie
,
X.
,
Tan
,
T.
,
Yan
,
Z.
,
Yan
,
Z.
, and
Hajj
,
M. R.
,
2019
, “
Broadband and High-Efficient L-Shaped Piezoelectric Energy Harvester Based on Internal Resonance
,”
Int. J. Mech. Sci.
,
159
, pp.
287
305
.
41.
Li
,
H.
,
Liu
,
D.
,
Wang
,
J.
, and
Shang
,
X.
,
2020
, “
Energy Harvesting Using a Torsional Mode L-Shaped Unimorph Structure: Modeling and Experimental Investigations
,”
ASME J. Vib. Acoust.
,
142
(
1
), p.
011008
.
42.
Li
,
H.
,
Liu
,
D.
,
Wang
,
J.
,
Shang
,
X.
, and
Hajj
,
M. R.
,
2020
, “
Broadband Bimorph Piezoelectric Energy Harvesting by Exploiting Bending-Torsion of L-Shaped Structure
,”
Energy Convers. Manage.
,
206
, p.
112503
.
43.
Malakooti
,
M. H.
, and
Sodano
,
H. A.
,
2015
, “
Piezoelectric Energy Harvesting Through Shear Mode Operation
,”
Smart Mater. Struct.
,
24
(
5
), p.
055005
.
44.
Malakooti
,
M. H.
, and
Sodano
,
H. A.
,
2013
, “
Direct Measurement of Piezoelectric Shear Coefficient
,”
J. Appl. Phys.
,
113
(
21
), p.
214106
.
45.
Kulkarni
,
V.
,
Ben-Mrad
,
R.
,
Prasad
,
S. E.
, and
Nemana
,
S.
,
2014
, “
A Shear-Mode Energy Harvesting Device Based on Torsional Stresses
,”
IEEE/ASME Trans. Mechatron.
,
19
(
3
), pp.
801
807
.
You do not currently have access to this content.