Abstract

Blade tip timing (BTT) technology is concerned with the estimation of turbomachinery blade stress. The stress is determined from BTT data by relating the measured tip displacement to the stress via finite element (FE) models based on the sensing position. However, the correlation of BTT data with FE predictions involves a number of uncertainties. One of the main ones is the effective positions detected by sensors may deviate from their nominal position due to the blade deformation, which will yield deceptive calibration factors. To deal with this problem, a novel method based on the amplitude ratio and virtual displacement optimization under the distance constraints of sensors installed in different axial positions is proposed to determine the accuracy calibration factors and sensing positions. It realizes the identification of sensing positions without the information of static deformation, and overcomes the inapplicability of the corrected displacement to bending modes. Both synchronous and asynchronous vibrations of five typical vibration modes are discussed to illustrate the applicability of this method. The results show that this method has better performance than traditional method. The prediction errors of bending modes are reduced from 20 ∼ 30% to 7%, and the maximum error of other modes is reduced from 72% to 23%. In addition, sensitivity analysis is performed to investigate the influence of vibration levels and mode shape inaccuracies. Results demonstrate the great potential of this method in vibration stress determination.

References

1.
Bornassi
,
S.
,
Berruti
,
T. M.
,
Firrone
,
C. M.
, and
Battiato
,
G.
,
2021
, “
Vibration Parameters Identification of Turbomachinery Rotor Blades Under Transient Condition Using Blade Tip-Timing Measurements
,”
Measurement
,
183
(
2021
), p.
109861
.
2.
Xu
,
J.
,
Qiao
,
B.
,
Liu
,
J.
,
Ao
,
C.
,
Teng
,
G.
, and
Chen
,
X.
,
2021
, “
Sparse Reconstruction for Blade Tip Timing Signal Using Generalized Minimax-Concave Penalty
,”
Mech. Syst. Signal Process.
,
161
(
2021
), p.
107961
.
3.
Ma
,
H.
,
Xie
,
F.
,
Nai
,
H.
, and
Wen
,
B.
,
2016
, “
Vibration Characteristics Analysis of Rotating Shrouded Blades With Impacts
,”
J. Sound Vib.
,
378
(
2016
), pp.
92
108
.
4.
Beirow
,
B.
,
Kühhorn
,
A.
, and
Nipkau
,
J.
,
2009
, “
On the Influence of Strain Gauge Instrumentation on Blade Vibrations of Integral Blisk Compressor Rotors Applying a Discrete Model
,”
Proceedings of the ASME Turbo Expo 2009: Power for Land, Sea, & Air
,
Orlando, FL
,
June 8–12
,
ASME
.
5.
Heath
,
S.
, and
Imregun
,
M.
,
1997
, “
A Review of Analysis Techniques for Blade Tip-Timing Measurements
,”
International Gas Turbine & Aero Engine Congress & Exhibition Proceedings
,
Orlando, FL
,
June 2–5
, pp.
1
8
.
6.
Chen
,
Z.
,
Sheng
,
H.
,
Xia
,
Y.
,
Wang
,
W.
, and
He
,
J.
,
2021
, “
A Comprehensive Review on Blade Tip Timing-Based Health Monitoring: Status and Future
,”
Mech. Syst. Signal Process.
,
149
, p.
107330
.
7.
Zablotskiy
,
I. Y.
, and
Korostelev
,
Y. A.
,
1978
,
Measurement of Turbine Blades With the ELURA Device, AD-A066122
.
8.
Heath
,
S.
, and
Imregun
,
M.
,
1996
, “
An Improved Single-Parameter Tip-Timing Method for Turbomachinery Blade Vibration Measurements Using Optical Laser Probes
,”
Int. J. Mech. Sci.
,
38
(
10
), pp.
1047
1058
.
9.
Heath
,
S.
,
1999
, “
A New Technique for Identifying Synchronous Resonances Using Tip-Timing
,”
ASME J. Eng. Gas Turbines Power
,
122
(
2
), pp.
219
225
.
10.
Rigosi
,
G.
,
Battiato
,
G.
, and
Berruti
,
T. M.
,
2017
, “
Synchronous Vibration Parameters Identification by Tip Timing Measurements
,”
Mech. Res. Commun.
,
79
(
1
), pp.
7
14
.
11.
Heath
,
S.
,
1996
, “A Study of Tip-Timing Techniques for the Determination of Bladed Disk Vibration Characteristics,”
Ph.D. thesis
,
University of London
,
UK, London
.
12.
Russhard
,
P.
,
2010
, “Development of a Blade Tip Timing Based Engine Health Monitoring System,”
Ph.D. thesis
,
University of Manchester
,
UK, Manchester
.
13.
Carrington
,
I. B.
,
Wright
,
J. R.
,
Cooper
,
J. E.
, and
Dimitriadis
,
G.
,
2001
, “
A Comparison of Blade Tip Timing Data Analysis Methods
,”
Proc. Inst. Mech. Eng. Part G—J. Aerosp. Eng.
,
215
(
2001
), pp.
301
312
.
14.
Gallego-Garrido
,
J.
,
Dimitriadis
,
G.
, and
Wright
,
J. R.
,
2007
, “
A Class of Methods for the Analysis of Blade Tip Timing Data From Bladed Assemblies Undergoing Simultaneous Resonances—Part I: Theoretical Development
,”
Int. J. Rotat. Mach.
,
2007
(
1
), pp.
1
11
.
15.
Gallego-Garrido
,
J.
,
Dimitriadis
,
G.
,
Carrington
,
I. B.
, and
Wright
,
J. R.
,
2007
, “
A Class of Methods for the Analysis of Blade Tip Timing Data From Bladed Assemblies Undergoing Simultaneous Resonances—Part
,”
Int. J. Rotat. Mach.
,
2007
(
1
), pp.
1
10
.
16.
Bastami
,
A. R.
,
Safarpour
,
P.
,
Mikaeily
,
A.
, and
Mohammadi
,
M.
,
2018
, “
Identification of Asynchronous Blade Vibration Parameters by Linear Regression of Blade Tip Timing Data
,”
ASME J. Eng. Gas Turbines Power
,
140
(
7
), p.
072506
.
17.
Kharyton
,
V.
,
Dimitriadis
,
G.
, and
Defise
,
C.
,
2017
, “
A Discussion on the Advancement of Blade Tip Timing Data Processing
,”
Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
, pp.
1
11
,
ASME
.
18.
Mohamed
,
M. E.
,
Bonello
,
P.
, and
Russhard
,
P.
,
2020
, “
Uncertainties in the Calibration Process of Blade Tip Timing Data Against Finite Element Model Predictions
,”
12th International Conference on Vibrations in Rotating Machinery—Institution of Mechanical Engineers
,
London, UK
,
Oct. 12–14
, pp.
298
311
.
19.
Khan
,
R.
,
Kamili
,
O. M.
,
Nagabhushana
,
S. T.
, and
Subbaram
,
S.
,
2013
, “
Correlation Between FEA and Testing for HCF-Safety Assessment of an Aero Engine Turbine Rotor Blade
,”
Proceedings of ASME 2013 Gas Turbine India Conference
,
Bangalore, Karnataka, India
,
Dec. 5–6
, pp.
1
10
,
ASME
.
20.
Joung
,
K. K.
,
Kang
,
S. C.
,
Paeng
,
K. S.
,
Choi
,
H. J.
,
You
,
N. J.
,
Park
,
N. G.
, and
Von Flotow
,
A.
,
2006
, “
Analysis of Vibration of the Turbine Blades Using Non-Intrusive Stress Measurement System
,”
Proceedings of ASME Power Conference
,
Atlanta, GA
,
May 2–4
, pp.
1
7
,
ASME
.
21.
Russhard
,
P.
,
2012
,
Blade Tip Timing—Frequently Asked Questions
,
Clemson University Cooperative Extension Service
,
Clemson, SC
.
22.
Zhang
,
X. J.
,
Wang
,
Y. R.
,
Jiang
,
X. H.
, and
Gao
,
S. M.
,
2020
, “
Parameter Identification and Sensor Configuration in Tip Timing for Asynchronous Vibration of a Deformed Blade With Finite Element Method Simulated Data Verification
,”
ASME J. Vib. Acoust.
,
142
(
2
), p.
021010
.
23.
Hatcher
,
J.
, and
Brindisi
,
J. M.
,
2016
,
Method of Determining the Location of Tip Timing Sensors During Operation
, US Patent 9530209 B2.
24.
Kominsky
,
D.
,
2016
,
Rotating Stall Detection Using Optical Measurement of Blade Untwist
, US Patent 8854626 B2.
25.
Mohamed
,
M.
,
Bonello
,
P.
, and
Russhard
,
P.
,
2019
, “
A Novel Method for the Determination of the Change in Blade Tip Timing Probe Sensing Position Due to Steady Movements
,”
Mech. Syst. Signal Process.
,
126
, pp.
686
710
.
26.
Mohamed
,
M. E.
, and
Bonello
,
P.
,
2020
, “
Determination of Simultaneous Steady-State Movements Using Blade Tip Timing Data
,”
ASME J. Vib. Acoust.
,
142
(
1
), p.
011017
.
27.
Zhang
,
X. L.
,
Wang
,
W. M.
,
Chen
,
K.
,
Li
,
W. B.
,
Zhang
,
D. P.
, and
Tian
,
L. L.
,
2021
, “
Five Dimensional Movement Measurement Method for Rotating Blade Based on Blade Tip Timing Measuring Point Position Tracking
,”
Mech. Syst. Signal Process.
,
161
(
2021
), p.
107898
.
28.
Zhang
,
X. J.
,
Wang
,
Y. R.
,
Jiang
,
X. H.
, and
Gao
,
S. M.
,
2020
, “
Blade Vibration Stress Determination Method Based on Blade Tip Timing Simulator and Finite Element Method
,”
ASME J. Eng. Gas Turbines Power
,
142
(
3
), p.
031001
.
29.
Mohamed
,
M.
,
Bonello
,
P.
, and
Russhard
,
P.
,
2018
, “
The Determination of Steady-State Movements Using Blade Tip Timing Data
,”
Proceedings of ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
,
Oslo, Norway
,
June 11–15
, pp.
1
10
,
ASME
.
30.
Kharyton
,
V.
,
Laine
,
J. P.
,
Thouverez
,
F.
, and
Kucher
,
O.
,
2010
, “
Simulation of Tip-Timing Measurements of a Cracked Bladed Disk Forced Response
,”
Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, & Air
,
Glasgow, UK
,
June 14–18
, pp.
1
10
,
ASME
.
31.
Diamond
,
D. H.
,
Heyns
,
P. S.
, and
Oberholster
,
A. J.
,
2015
,
A Comparison Between Three Blade Tip Timing Algorithms for Estimating Synchronous Turbomachine Blade Vibration, Lecture Notes in Mechanical Engineering
,
Springer
,
Cham
.
32.
Figaschewsky
,
F.
,
Hanschke
,
B.
, and
Kühhorn
,
A.
,
2018
, “
Efficient Generation of Engine Representative Tip Timing Data Based on a Reduced Order Model for Bladed Rotors
,”
Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
,
Oslo, Norway
,
June 11–15
, pp.
1
12
,
ASME
.
33.
Hood Technology Corporation
,
2011
,
Overview of Blade Vibration Monitoring Capabilities
, http://www.hoodtech.com/bvm/doc/overview_document.pdf
34.
Diamond
,
D. H.
, and
Heyns
,
P. S.
,
2018
, “
A Novel Method for the Design of Proximity Sensor Configuration for Rotor Blade Tip Timing
,”
ASME J. Vib. Acoust.
,
140
(
6
), p.
061003
.
35.
Russhard
,
P.
,
2016
, “
Blade Tip Timing (BTT) Uncertainties
,”
AIP Conf. Proc.
,
1740
(
1
), pp.
1
14
.
36.
Mohamed
,
M. E.
,
Bonello
,
P.
,
Russhard
,
P.
,
Procházka
,
P.
,
Mekhalfia
,
M. L.
, and
Tchuisseu
,
E. B. T.
,
2022
, “
Experimental Validation of FEM-Computed Stress to Tip Deflection Ratios of Aero-Engine Compressor Blade Vibration Modes and Quantification of Associated Uncertainties
,”
Mech. Syst. Signal Process.
,
178
, p.
109257
.
You do not currently have access to this content.